Abstract The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO 2 ) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) ( P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR ( P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO 2 , pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.
Ginger (Zingiber officinale Rosc.) plantlets were propagated in vitro and acclimated under different photosynthetic photon flux densities (60 and 250 µmol m-2 s-1 = LI and HI, respectively). Increases in chlorophyll (Chl) content and Chl a/b ratio were found under both irradiances. In vitro plantlets (day 0) exhibited a low photosynthesis, but chloroplasts from in vitro leaves contained well developed grana and osmiophillic globules. Photoinhibition in leaves formed in vitro was characterized by decrease of photochemical efficiency and quantum efficiency of photosystem 2 photochemistry in HI treatment during acclimation. The new leaves formed during acclimation in both treatments showed a higher photosynthetic capacity than the leaves formed in vitro. Also activities of antioxidant enzymes of micropropagated ginger plantlets changed during acclimation.
Serratia marcescens has been detected in space habitats. To explore the influence of the space flight environment on this bacterium, we investigated the genome sequence of LCT-SM166, which was isolated after space flight and has a specific carbon source utilization pattern.
For a long time, Enterococcus faecium was considered a harmless commensal of the mammalian gastrointestinal (GI) tract and was used as a probiotic in fermented foods. In recent decades, E. faecium has been recognised as an opportunistic pathogen that causes diseases such as neonatal meningitis, urinary tract infections, bacteremia, bacterial endocarditis and diverticulitis. E. faecium could be taken into space with astronauts and exposed to the space environment. Thus, it is necessary to observe the phenotypic and molecular changes of E. faecium after spaceflight. An E. faecium mutant with biochemical features that are different from those of the wild-type strain was obtained from subculture after flight on the SHENZHOU-8 spacecraft. To understand the underlying mechanism causing these changes, the whole genomes of both the mutant and the WT strains were sequenced using Illumina technology. The genomic comparison revealed that dprA, a recombination-mediator gene, and arpU, a gene associated with cell wall growth, were mutated. Comparative transcriptomic and proteomic analyses showed that differentially expressed genes or proteins were involved with replication, recombination, repair, cell wall biogenesis, glycometabolism, lipid metabolism, amino acid metabolism, predicted general function and energy production/conversion. This study analysed the comprehensive genomic, transcriptomic and proteomic changes of an E. faecium mutant from subcultures that were loaded on the SHENZHOU-8 spacecraft. The implications of these gene mutations and expression changes and their underlying mechanisms should be investigated in the future. We hope that the current exploration of multiple "-omics" analyses of this E. faecium mutant will provide clues for future studies on this opportunistic pathogen.
Summary There is evidence to suggest that microgravity/weightlessness can induce changes in lung physiology/function. We hypothesized that microgravity, induced by head‐down bed rest ( HDBR ), would induce changes in lung function and that exercise training with artificial gravity ( AG ) would prevent these changes from occurring. Twelve participants were randomly assigned to a control or AG exercise countermeasure ( CM ) group ( n = 6 per group) and 96 h of 6° HDBR . Participants in the CM group were exposed to AG (alternating 2 min intervals of +1·0 and +2·0 G) for 30 min, twice daily, during which time ergometric exercise (40 W intensity) was performed. Pulse rate, oxygen saturation ( SO 2 ) and lung function were measured and compared between groups. The CM and control groups were similar in mean age, height and weight. There were no significant within or between group differences over time in pulse rate, SO 2 , vital capacity, inspiratory capacity, tidal volume, expiratory reserve volume, inspiratory reserve volume, minute ventilation, forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow, maximal expiratory flow in 25%, 50% and 75% vital capacity, forced inspiratory vital capacity, forced inspiratory volume in 1 s and maximal voluntary ventilation. Microgravity induced by 96 h of HDBR does not appear to affect lung function in humans. Further, AG with exercise training does not change lung function during 96 h of HDBR in humans.
Abstract Icotinib hydrochloride (IH) is a small molecular TKI independently developed in China. As the first-line anti-tumor agent, is widely used for treatment of non-small cell lung cancer (NSCLC). Gallic acid (GA), a natural plant extract, is reported that it has a variety of pharmacological and biological properties. GA is a active natural phenolic extracted from Tannins that has been shown to exhibit anticancer activities on various types of tumors. Here, we reported that GA was capable of sensitizing A549/PC9 cells to IH by enhancing apoptosis. Mechanistic analyses indicated that IH-induced caspase-3-dependent apoptosis was elevated in the presence of GA through activating extracellular signal-regulated Hippo-YAP pathway. Furthermore, GA also promoted IH-induced cytotoxic, downregulated expression of p-YAP and caspase-3. In vivo , the co-treatment of IH and GA notably reduced the tumor size when compared with IH treatment alone. Notably, GA significantly reduced the toxicity generated by IH in tumor-bearing mice. This study identifies the unique role of GA enhance IH sensitivity through apoptosis, and suggests that combined IH and GA might be a novel therapeutic strategy for patients with NSCLC.