Background. Accurate determination of islet purity and mass before transplantation is an essential part of quality control. The standard method is based on manual evaluation of these parameters and thus subjective and prone to errors. Therefore, we developed a computerized approach aimed at evaluating more objectively the number and purity of isolated human islets. Methods. Islets were isolated and purified from human pancreata according to a standard method. For each preparation, two samples were dithizone stained. One sample was analyzed manually by microscopy, following the standard procedure, and the other was digitally photographed for both digital manual and computerized analyses. Computerized analysis was performed using the MetaMorph and ImageJ softwares to automatically quantify purity and size of islets. Islet equivalent (IEQ) number was calculated using the Ricordi algorithm or considering the individual volume of each islet. Computerized analysis was validated using calibrated red glass microspheres. Results. When digital manual and computerized analyses were compared, mean values of total islet number, IEQ number calculated using the Ricordi algorithm, and purity were similar. Comparisons of individual values showed good correlations (r2≥0.89). By standard manual analysis, total islet number and purity were higher and IEQ number similar compared with digital manual and computerized analyses. IEQ number was 10% lower (P<0.0001) when calculated using individual sphere volumes compared with the Ricordi algorithm. Measurement of red glass microspheres showed identical values comparing standard manual and computerized analyses. Conclusions. Computer-assisted digital image analysis is an objective and a reliable method for analyzing pancreatic islets before transplantation.
The aim of this study was to evaluate the effects of intraperitoneal transplantation of encapsulated human hepatocytes on liver metabolism and regeneration of mice with acute liver failure. Primary human hepatocytes were immortalized using lentiviral vectors coding for antiapoptotic genes and microencapsulated using alginate-polylysine polymers. In vitro, immortalized human hepatocytes showed low, but stable, synthetic and catabolitic functions over time, when compared to primary hepatocytes. In vivo, mice with acute liver failure and transplanted with encapsulated immortalized human hepatocytes had a significantly improved survival and biochemical profile, compared to mice transplanted with empty capsules. Serum levels of cytokines implicated in liver regeneration were lower in mice transplanted with hepatocytes compared to mice receiving empty capsules. This decrease was significant for IL-6 and HGF at 3 h. Measurement of liver regeneration showed no significant difference between mice transplanted with hepatocytes compared to control groups. Intraperitoneal transplantation of encapsulated immortalized hepatocytes significantly improved survival of mice with acute liver failure by providing metabolic support and without modifying liver regeneration. The lower levels of cytokines implicated in liver regeneration suggest that the metabolic support provided by the encapsulated hepatocytes reduced the inflammatory stress on the liver and herein decreased the regenerative trigger on residual hepatocytes. These data emphasize that metabolic function and regeneration of hepatocytes are two distinct aspects that need to be studied and approached separately during acute liver failure.
Organ transplantation has encountered great development during the 80's. However, the number of organ donations and transplantations performed stabilized during the 90ies, with a concomitant increase of patients on the waiting list. Xenotransplantation, i.e. the use of animal organs for transplantation to humans, is one among various alternatives to human organ donation. Xenotransplantation offers several advantages, e.g. it would be possible to transplant all patients at an early stage of their disease. The main barriers to xenotransplantation are the strong immunological responses that human develop against animal antigens and zoonoses. To overcome these hurdles, genetically modified pigs have been engineered by cloning and could allow the initiation of new clinical trials in a near future.
The aim of xenotransplantation is to allow the transplantation of animal organs or cells to humans. This approach would immediately eliminate the human organ shortage that is responsible for a significant mortality of patients on the waiting list for transplantation of organs. The immune differences between pig and human induce an immediate rejection of porcine tissues by humans. This rejection has recently been partially controlled by genetic engineering of pigs, the use of new immunosuppressive drugs and encapsulation of isolated cells. However, due to the risk of transmission of animal infectious agents to humans, the WHO recommends that clinical application of xenotransplantation only takes place if adequate regulations are in place.
It is generally admitted that the endocrine cell organization in human islets is different from that of rodent islets. However, a clear description of human islet architecture has not yet been reported. The aim of this work was to describe our observations on the arrangement of human islet cells.Human pancreas specimens and isolated islets were processed for histology. Sections were analyzed by fluorescence microscopy after immunostaining for islet hormones and endothelial cells.In small human islets (40-60 mum in diameter), beta-cells had a core position, alpha-cells had a mantle position, and vessels laid at their periphery. In bigger islets, alpha-cells had a similar mantle position but were found also along vessels that penetrate and branch inside the islets. As a consequence of this organization, the ratio of beta-cells to alpha-cells was constantly higher in the core than in the mantle part of the islets, and decreased with increasing islet diameter. This core-mantle segregation of islet cells was also observed in type 2 diabetic donors but not in cultured isolated islets. Three-dimensional analysis revealed that islet cells were in fact organized into trilaminar epithelial plates, folded with different degrees of complexity and bordered by vessels on both sides. In epithelial plates, most beta-cells were located in a central position but frequently showed cytoplasmic extensions between outlying non-beta-cells.Human islets have a unique architecture allowing all endocrine cells to be adjacent to blood vessels and favoring heterologous contacts between beta- and alpha-cells, while permitting homologous contacts between beta-cells.
Shortage of organ donors limits the number of possible liver transplantations. Alternative therapies for treatment of liver failure are currently being developed: (i) extracorporeal artificial liver devices; (ii) bioartificial liver devices using hepatocytes; and (iii) hepatocyte transplantation. The objective of these strategies is to bridge patients with liver failure until a suitable liver allograft is obtained for transplantation or the patient's own liver regenerates sufficiently to resume normal function. In this review, we discuss these strategies and summarize the current status of clinical experience.
Regenerative medicine aims to replace a body function or specific cell loss. It includes therapies at the forefront of modem medicine, issuing from translational biomedical research. Transplantation of organs and cells has revolutionized the management of patients for whom medical treatment is a failure. Unfortunately, organ shortage is limiting treatment possibility. As an example, among the 15,000 patients with type I diabetes in Switzerland, only approximately 30 can receive a pancreas or an islet transplant per year. Second example, 500 patients die each year in Switzerland from alcoholic cirrhosis because no treatment is available. Transplantation of islet cells, hepatocytes, mesenchymal stem cells or dopaminergic neurons represents hope fora therapy available for large populations of patients.
Multipotent mesenchymal stromal cells (MSC) are currently investigated clinically as cellular therapy for a variety of diseases. Differentiation of MSC toward endodermal lineages, including hepatocytes and their therapeutic effect on fibrosis has been described but remains controversial. Recent evidence attributed a fibrotic potential to MSC. As differentiation potential might be dependent of donor age, we studied MSC derived from adult and pediatric human bone marrow and their potential to differentiate into hepatocytes or myofibroblasts in vitro and in vivo. Following characterization, expanded adult and pediatric MSC were co-cultured with a human hepatoma cell line, Huh-7, in a hepatogenic differentiation medium containing Hepatocyte growth factor, Fibroblast growth factor 4 and oncostatin M. In vivo, MSC were transplanted into spleen or liver of NOD/SCID mice undergoing partial hepatectomy and retrorsine treatment. Expression of mesenchymal and hepatic markers was analyzed by RT-PCR, Western blot and immunohistochemistry. In vitro, adult and pediatric MSC expressed characteristic surface antigens of MSC. Expansion capacity of pediatric MSC was significantly higher when compared to adult MSC. In co-culture with Huh-7 cells in hepatogenic differentiation medium, albumin expression was more frequently detected in pediatric MSC (5/8 experiments) when compared to adult MSC (2/10 experiments). However, in such condition pediatric MSC expressed alpha smooth muscle more strongly than adult MSC. Stable engraftment in the liver was not achieved after intrasplenic injection of pediatric or adult MSC. After intrahepatic injection, MSC permanently remained in liver tissue, kept a mesenchymal morphology and expressed vimentin and alpha smooth muscle actin, but no hepatic markers. Further, MSC localization merges with collagen deposition in transplanted liver and no difference was observed using adult or pediatric MSC. In conclusion, when transplanted into an injured or regenerating liver, MSC differentiated into myofibroblasts with development of fibrous tissue, regardless of donor age. These results indicate that MSC in certain circumstances might be harmful due to their fibrogenic potential and this should be considered before potential use of MSC for cell therapy.