Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The first kilogram-scale synthesis of the PPARα agonist LY518674 (1) is described. The de novo convergent synthetic approach involved coupling of two rapidly assembled components, triazolone formation via a novel acid-promoted cyclization reaction, and final step saponification, delivering the compound in 32.5% overall yield via eight total steps with a six-step longest linear sequence. A regioselective alkylation on the dianion of 4-hydroxyphenylbutyric acid allowed the direct preparation of one of the convergent coupling partners, carboxylic acid 12, and an unusual solvent effect enabled the installation of a urea group on a protected hydrazine, permitting the regiospecific preparation of the other coupling partner, semicarbazide mesylate 17. Sulfonic acids were found to effect the desired triazolone ring formation, affording 25 from the coupled precursor acyl semicarbazide 23. Following saponification of 25 to 1, a wide solubility differential between ethyl acetate extracts of 1 and solutions of 1 in anhydrous ethyl acetate was harnessed in the final crystallization step to deliver the final compound in high yield and purity. The novel acid-mediated triazolone formation was further evaluated on a range of additional substrates, showing the new methodology to be largely complementary to existing base-mediated triazolone syntheses.
Synthesis of indolo[6,7-a]pyrrolo[3,4-c]carbazoles 1, a new class of cyclin D1/CDK4 inhibitors, by oxidation of the corresponding aryl indolylmaleimides 2, will be described. Two approaches to the synthesis of 2 were identified that required new methods for the synthesis of 7-substituted indole acetamides 3 and N-methyl (indol-7-yl)oxoacetates 6. The chemistry developed enabled introduction of functionality (-OR, NR(2)) at C(12) and N(13) facilitating structure-activity relationship (SAR) evaluation of this indolocarbazole platform.
The melanocortin receptors have been implicated as potential targets for a number of important therapeutic indications, including inflammation, sexual dysfunction, and obesity. We identified compound 1, an arylpiperazine attached to the dipeptide H-d-Tic-d-p-Cl-Phe-OH, as a novel melanocortin subtype-4 receptor (MC4R) agonist through iterative directed screening of nonpeptidyl G-protein-coupled receptor biased libraries. Structure-activity relationship (SAR) studies demonstrated that substitutions at the ortho position of the aryl ring improved binding and functional potency. For example, the o-isopropyl-substituted compound 29 (K(i) = 720 nM) possessed 9-fold better binding affinity compared to the unsubstituted aryl ring (K(i) = 6600 nM). Sulfonamide 39 (K(i) = 220 nM) fills this space with a polar substituent, resulting in a further 2-fold improvement in binding affinity. The most potent compounds such as the diethylamine 44 (K(i) = 60 nM) contain a basic group at this position. Basic heterocycles such as the imidazole 50 (K(i) = 110 nM) were similarly effective. We also demonstrated good oral bioavailability for sulfonamide 39.
This paper describes a convenient protocol for the regioselective sulfonylation of alpha-chelatable alcohols. Typically, the reaction of alpha-heterosubstituted alcohols with 1 equiv of p-TsCl and 1 equiv of Et(3)N in the presence of 2 mol % of Bu(2)SnO leads to rapid, regioselective, and exclusive monotosylation. The pK(a) of the amine was correlated to the reaction rate. A plausible mechanism for this reaction has been proposed on the basis of (119)Sn NMR studies.
The reaction of substituted glycols with catalytic dibutyltin oxide, stoichiometric p-toluenesulfonyl chloride, and triethylamine in CH2Cl2 resulted in the complete and rapid sulfonylation at the primary alcohol. The α-heterosubstituted primary alcohol moiety appeared optimal for best results, supporting the intermediacy of a five-membered chelate. The role of the amine is discussed, in addition to catalyst requirements and solvent effects.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTSynthesis and Biological Evaluation of a New Series of Sterols as Potential Hypocholesterolemic AgentsHo-Shen Lin, Ashraff A. Rampersaud, Robert A. Archer, Joseph M. Pawlak, Lisa S. Beavers, Robert J. Schmidt, Raymond F. Kauffman, William R. Bensch, Thomas F. Bumol, and Cite this: J. Med. Chem. 1995, 38, 2, 277–288Publication Date (Print):January 1, 1995Publication History Published online1 May 2002Published inissue 1 January 1995https://pubs.acs.org/doi/10.1021/jm00002a010https://doi.org/10.1021/jm00002a010research-articleACS PublicationsRequest reuse permissionsArticle Views245Altmetric-Citations20LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts