ABSTRACT The recent advent of 3D in Electron Microscopy (EM) has allowed for detection of detailed sub-cellular nanometer resolution structures. While being a scientific breakthrough, this has also caused an explosion in dataset size, necessitating the development of automated workflows. Automated workflows typically benefit reproducibility and throughput compared to manual analysis. The risk of automation is that it ignores the expertise of the microscopy user that comes with manual analysis. To mitigate this risk, this paper presents a hybrid paradigm. We propose a ‘human-in-the-loop’ (HITL) approach that combines expert microscopy knowledge with the power of large-scale parallel computing to improve EM image quality through advanced image restoration algorithms. An interactive graphical user interface, publicly available as an ImageJ plugin, was developed to allow biologists to use our framework in an intuitive and user-friendly fashion. We show that this plugin improves visualization of EM ultrastructure and subsequent (semi-)automated segmentation and image analysis.