Abstract Background Multidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs). To better understand methods for prevention of MDR infections, this study aimed to determine, among other factors, the role of MDR-Gram-negative bacteria (GNB) contaminating neonatal cots and hands of mothers as possible role in transmission of bacteremia at Bugando Medical Centre (BMC), Mwanza, Tanzania. Methods This cross-sectional, hospital-based study was conducted among neonates and their mothers in a neonatal intensive care unit and a neonatology unit at BMC from December 2018 to April 2019. Blood specimens ( n = 200) were sub-cultured on 5% sheep blood agar (SBA) and MacConkey agar (MCA) plates. Other specimens (200 neonatal rectal swabs, 200 maternal hand swabs and 200 neonatal cot swabs) were directly inoculated on MCA plates supplemented with 2 μg/ml cefotaxime (MCA-C) for screening of GNB resistant to third generation cephalosporins, r-3GCs. Conventional biochemical tests, Kirby-Bauer technique and resistance to cefoxitin 30 μg were used for identification of bacteria, antibiotic susceptibility testing and detection of MDR-GNB and screening of potential Amp-C beta lactamase producing GNB, respectively. Results The prevalence of culture confirmed bacteremia was 34.5% of which 85.5% were GNB. Fifty-five (93.2%) of GNB isolated from neonatal blood specimens were r-3GCs. On the other hand; 43% of neonates were colonized with GNB r-3GCs, 32% of cots were contaminated with GNB r-3GCs and 18.5% of hands of neonates’ mothers were contaminated with GNB r-3GCs. The prevalences of MDR-GNB isolated from blood culture and GNB r-3GCs isolated from neonatal colonization, cots and mothers’ hands were 96.6, 100, 100 and 94.6%, respectively. Significantly, cyanosis (OR[95%CI]: 3.13[1.51–6.51], p = 0.002), jaundice (OR[95%CI]: 2.10[1.07–4.14], p = 0.031), number of invasive devices (OR[95%CI]: 2.52[1.08–5.85], p = 0.031) and contaminated cot (OR[95%CI]: 2.39[1.26–4.55], p = 0.008) were associated with bacteremia due to GNB. Use of tap water only (OR[95%CI]: 2.12[0.88–5.09], p = 0.040) was protective for bacteremia due to GNB. Conclusion High prevalence of MDR-GNB bacteremia and intestinal colonization, and MDR-GNB contaminating cots and mothers’ hands was observed. Improved cots decontamination strategies is crucial to limit the spread of MDR-GNB. Further, clinical presentations and water use should be considered in administration of empirical therapy whilst awaiting culture results.
Abstract Background SARS-CoV-2 infection, the causative agent of COVID-19, has resulted in over 2,500,000 deaths to date 1 . Although vaccines are becoming available, treatment options remain limited. Repurposing of compounds could reduce the time, cost, and risks associated with the development of new drugs and has been the focus of many clinical studies. Here, we summarise available evidence on 29 FDA-approved compounds, from in vitro results to clinical trials, focussing on remdesivir, galidesivir and favipiravir, and test 29 antiviral compounds’ activity in vitro . Methods A comprehensive search strategy was used to retrieve trials and publications related to antiviral compounds with potential efficacy to treat coronaviruses. These data were used to prioritise testing of a panel of antiviral drugs in vitro against patient isolates of SARS-CoV-2. An in vitro screen was carried out to determine the activity of 29 FDA-approved compounds. Results 625 clinical trials investigated 16 repurposed antiviral candidate compounds for the treatment of COVID-19. In vitro studies identified ten drug candidates with demonstrable anti-SARS-CoV-2 activity, including favipiravir, remdesivir, and galidesivir. To validate these findings, a drug screen was conducted using two cell lines and wildtype isolates of SARS-CoV-2 isolated from patients in the UK. While eight drugs with anti-SARS-CoV-2 activity were identified in vitro, activity in clinical trials has, as yet failed to demonstrate a strong effect on mortality. Conclusions So far, no repurposed antiviral has shown a strong effect on mortality in clinical studies. The urgent need for novel antivirals in this pandemic is clear, despite the costs and time associated with their development. Research in Context Evidence before this study Repurposing of existing compounds for the treatment of COVID-19 has been the focus of many in vitro studies and clinical trials, saving time, costs and risks associated with the research and development of new compounds. Added value of this study We reviewed the literature for 29 FDA-approved compounds with previously reported (or suspected) anti-SARS-CoV-2 activity and found 625 clinical trials that have been undertaken on 16 different drugs. We determined if repurposed antivirals are suitable for clinical trials based on previously published data, and conducted an additional in vitro screen using locally circulating strains in the UK (PHE2 and GLA1). We report the difference in IC 50 from published data using Wuhan1/Wash1 strains with PHE2 and GLA1, including IC 50 values below 100μM for galidesivir in wild-type virus. Given the limited success of repurposed compounds in the treatment of COVID-19, we comment on the urgent need for new antivirals specifically targeting SARS-CoV-2. Implications of all the available evidence Our data show that most prospective compounds for repurposing show no anti-SARS-CoV-2 activity, and antiviral activity in vitro does not always translate to clinical benefit. So far, no repurposed compound has shown a strong effect on mortality in clinical studies. Drugs, including monoclonal antibody therapies, that have been developed to target SARS-CoV-2 virus itself have shown most promise.
Neonatal mortality remains high in Tanzania at approximately 20 deaths per 1000 live births. Low birthweight, prematurity, and asphyxia are associated with neonatal mortality; however, no studies have assessed the value of combining underlying conditions and vital signs to provide clinicians with early warning of infants at risk of mortality. The aim of this study was to identify risk factors (including vital signs) associated with neonatal mortality in the neonatal intensive care unit (NICU) in Bugando Medical Centre (BMC), Mwanza, Tanzania; to identify the most accurate generalised linear model (GLM) or decision tree for predicting mortality; and to provide a tool that provides clinically relevant cut-offs for predicting mortality that is easily used by clinicians in a low-resource setting.In total, 165 neonates were enrolled between November 2019 and March 2020, of whom 80 (48.5%) died. We competed the performance of GLMs and decision trees by resampling the data to create training and test datasets and comparing their accuracy at correctly predicting mortality.GLMs always outperformed decision trees. The best fitting GLM showed that (for standardised risk factors) temperature (OR 0.61, 95% CI 0.40-0.90), birthweight (OR 0.33, 95% CI 0.20-0.52), and oxygen saturation (OR 0.66, 95% CI 0.45-0.94) were negatively associated with mortality, while heart rate (OR 1.59, 95% CI 1.10-2.35) and asphyxia (OR 3.23, 95% 1.25-8.91) were risk factors. To identify the tool that balances accuracy and with ease of use in a low-resource clinical setting, we compared the best fitting GLM with simpler versions, and identified the three-variable GLM with temperature, heart rate, and birth weight as the best candidate. For this tool, cut-offs were identified using receiver operator characteristic (ROC) curves with the optimal cut-off for mortality prediction corresponding to 76.3% sensitivity and 68.2% specificity. The final tool is graphical, showing cut-offs that depend on birthweight, heart rate, and temperature.Underlying conditions and vital signs can be combined into simple graphical tools that improve upon the current guidelines and are straightforward to use by clinicians in a low-resource setting.
Extracellular vesicles (EV) are sub-micron circulating vesicles found in all bodily fluids and in all species so far tested. They have also recently been identified in seawater and it has further been shown that they are released from microorganisms and may participate in interspecies communication in the gut. EV are typically composed of a lipid bilayer formed from the plasma membrane and which encases a cargo that can include genetic material, proteins, and lipids. At least two different processes of formation and release have been described in mammalian cells. The exosome population (50 to 150nm size) are produced via a lyso-endosomal pathway, while microvesicles (100 to 1000nm) are formed by budding of the plasma membrane in a calcium dependent process. Both pathways are highly regulated and appear to be conserved amongst different species. EV release has been shown to be upregulated in a number of human chronic diseases including cardiovascular disease, metabolic disorders, obesity, and cancer; evaluation of their presence in veterinary samples may aid diagnosis in the future. This review will provide insight into the formation of EV and their detection in bodily fluids from different veterinary species and how they may provide a novel addition to the veterinary toolkit of the future.
Abstract Neonatal bloodstream infections (BSI) can lead to sepsis, with high morbidity and mortality, particularly in low-income settings. The high prevalence of third-generation cephalosporin-resistant organisms (3GC-RO) complicates the management of BSI. Whether BSI is linked to carriage of 3GC-RO, or to acquisition from the hospital environment is important for infection prevention and control, but the relationship remains unclear, especially in low-income settings. At a tertiary hospital in Mwanza, Tanzania, we screened neonatal blood and rectal samples from 200 neonates, and 400 (hospital) environmental samples. We used logistic regression to identify risk factors, and Kolmogorov–Smirnov tests and randomisation analyses to compare distributions of species and resistance patterns to assess potential routes of transmission. We found that BSIs caused by 3GC-RO were frequent (of 59 cases of BSI, 55 were caused by 3GC-RO), as was carriage of 3GC-RO, particularly Escherichia coli , Klebsiella pneumoniae , and Acinetobacter species. In the 28 infants with both a carriage and blood isolate, there were more (4 of 28) isolate pairs of the same species and susceptibility profile than expected by chance ( p < 0.05), but most pairs were discordant (24 of 28). Logistic regression models found no association between BSI and carriage with either 3GC-RO or only 3GC-R K. pneumoniae . These analyses suggest that carriage of 3GC-RO is not a major driver of BSI caused by 3GC-RO in this setting. Comparison with environmental isolates showed very similar distributions of species and resistance patterns in the carriage, BSI, and the environment. These similar distributions, a high frequency of Acinetobacter spp. isolations, the lack of strong association between carriage and BSI, together with the high proportion of 3GC-RO in BSI all suggest that these neonates acquire multidrug-resistant carriage and blood isolates directly from the hospital environment.
The proportions and similarities of extended-spectrum β-lactamase (ESBL) producing K. pneumoniae (ESBL-KP) and E. coli (ESBL-EC) carrying multiple ESBL genes is poorly known at our setting. This study investigated the existence of multiple ESBL genes (blaCTX-M, blaTEM, and blaSHV) among ESBL-KP and ESBL-EC concurrently isolated from clinical, colonization, and contamination samples from neonatology units in Mwanza-Tanzania. Twenty and 55 presumptive ESBL-EC and ESBL-KP, respectively, from a previous study archived at -80 °C were successfully recovered for this study. Isolates were screened and confirmed for production of ESBLs by phenotypic methods followed by multiplex PCR assay to determine ESBL genes. All (100%) and 97.3% of presumptive ESBL isolates were phenotypically confirmed by Clinical and Laboratory Standards Institute (CLSI) and modified double-disc synergy methods, respectively. About 93.3% (70/75) of phenotypically confirmed ESBL isolates had at least one ESBL gene, whereby for 62.9% (44/70), all ESBL genes (blaCTX-M, blaTEM, and blaSHV) were detected. Eight pairs of ESBL bacteria show similar patterns of antibiotics susceptibility and ESBL genes. ESBL-KP and ESBL-EC, concurrently isolated from clinical, colonization and contamination samples, harbored multiple ESBL genes. Further, eight pairs of ESBL isolates had similar patterns of antibiotics susceptibility and ESBL genes, suggesting transmission of and/or sharing of mobile genetic elements (MGEs) among ESBL-KP and ESBL-EC.
Abstract Background Remdesivir has been evaluated in clinical trial populations, but there is a sparsity of evidence evaluating effectiveness in general populations. Methods Adults eligible to be treated with remdesivir, requiring oxygen but not ventilated, were identified from UK patients hospitalised with COVID-19. Patients treated with remdesivir within 24h of hospitalisation were compared with propensity-score matched controls; estimates of effectiveness were calculated for short-term outcomes (14-day mortality, 28-day mortality, time-to-recovery among others) using multivariable modelling. Results 9,278 out of 39,330 patients satisfied eligibility criteria. 1,549 patients were identified as ‘treated’ and matched with 4,964 controls. Patients were 62% male, mean (SD) age 63.1 (15.6) years, 80% ‘White’ ethnicity, and symptomatic for a median of 6 days prior to baseline. There was no statistically significant benefit of remdesivir at 14 days in terms of mortality or clinical status; there were signals of effectiveness in time-to-recovery after day 9, and a reduction in 28-day mortality. Conclusion In a real-world setting, initiation of remdesivir within 24h of hospitalisation in conjunction with standard of care was not associated with a benefit at 14 days but supports clinical trial evidence of a potential reduction in 28-day mortality.