The current unprecedented outbreak of Ebola virus (EBOV) disease in West Africa has demonstrated the urgent need for a vaccine. Here, we describe the evaluation of an EBOV vaccine candidate based on Kunjin replicon virus-like particles (KUN VLPs) encoding EBOV glycoprotein with a D637L mutation (GP/D637L) in nonhuman primates. Four African green monkeys (Cercopithecus aethiops) were injected subcutaneously with a dose of 109 KUN VLPs per animal twice with an interval of 4 weeks, and animals were challenged 3 weeks later intramuscularly with 600 plaque-forming units of Zaire EBOV. Three animals were completely protected against EBOV challenge, while one vaccinated animal and the control animal died from infection. We suggest that KUN VLPs encoding GP/D637L represent a viable EBOV vaccine candidate.
The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α–converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP.
The complete nucleotide sequence of the genomic 42S RNA of Eastern equine encephalitis virus has been defined for the first time. The strategy of this viral genome occurred analogous to the ones of the other alfa viruses. The comparison of amino acid sequences of E1 and E2 proteins from the two strains of the virus has revealed a number of differences. Partially, they are localized in the hydrophilic regions of the protein molecules and evidently participate in organization of the specific antigenic structures. The amino acid sequences of all viral proteins have been comparatively analysed with the sequences of the analogous proteins of other known alfa viruses.
VP30 is a phosphoprotein essential for the initiation of Ebola virus transcription. In this work, we have studied the effect of mutations in VP30 phosphorylation sites on the ebolavirus replication cycle by using a reverse genetics system. We demonstrate that VP30 is involved in reinitiation of gene transcription and that this activity is affected by mutations at the phosphorylation sites.
To study the mechanisms underlying the high pathogenicity of Ebola virus, we have established a system that allows the recovery of infectious virus from cloned cDNA and thus permits genetic manipulation. We created a mutant in which the editing site of the gene encoding envelope glycoprotein (GP) was eliminated. This mutant no longer expressed the nonstructural glycoprotein sGP. Synthesis of GP increased, but most of it accumulated in the endoplasmic reticulum as immature precursor. The mutant was significantly more cytotoxic than wild-type virus, indicating that cytotoxicity caused by GP is down-regulated by the virus through transcriptional RNA editing and expression of sGP.
The protein C is a small viral protein encoded in an overlapping frame of the P gene in the sub-family Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a minireplicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins former two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representative of these two clusters, our discovery that they have a similar structure indi-cates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strik-ingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C) depending on which cluster they belong to.