Mast cell activation results in the immediate release of proinflammatory mediators prestored in cytoplasmic granules, as well as initiation of lipid mediator production and cytokine synthesis by these resident tissue leukocytes. Allergen-induced mast cell activation is central to the pathogenesis of asthma and other allergic diseases. Presently, most pharmacological agents for the treatment of allergic disease target receptors for inflammatory mediators. Many of these mediators, such as histamine, are released by mast cells. Targeting pathways that limit antigen-induced mast cell activation may have greater therapeutic efficacy by inhibiting the synthesis and release of many proinflammatory mediators produced in the mast cell. In vitro studies using cultured human and mouse mast cells, and studies of mice lacking A2B receptors, suggest that adenosine receptors, specifically the Gs-coupled A2A and A2B receptors, might provide such a target. Here, using a panel of mice lacking various combinations of adenosine receptors, and mast cells derived from these animals, we show that adenosine receptor agonists provide an effective means of inhibition of mast cell degranulation and induction of cytokine production both in vitro and in vivo. We identify A2B as the primary receptor limiting mast cell degranulation, whereas the combined activity of A2A and A2B is required for the inhibition of cytokine synthesis.
A bstract : Cyclic AMP has been shown to inhibit cell proliferation in many cell types and to activate it in some. The latter has been recognized only lately, thanks in large part to studies on the regulation of thyroid cell proliferation in dog thyroid cells. The steps that led to this conclusion are outlined. Thyrotropin activates cyclic accumulation in thyroid cells of all the studied species and also phospholipase C in human cells. It activates directly cell proliferation in rat cell lines, dog, and human thyroid cells but not in bovine or pig cells. The action of cyclic AMP is responsible for the proliferative effect of TSH. It accounts for several human diseases: congenital hyperthyroidism, autonomous adenomas, and Graves' disease; and, by default, for hypothyroidism by TSH receptor defect. Cyclic AMP proliferative action requires the activation of protein kinase A, but this effect is not sufficient to explain it. Cyclic AMP action also requires the permissive effect of IGF‐1 or insulin through their receptors, mostly as a consequence of PI3 kinase activation. The mechanism of these effects at the level of cyclin and cyclin‐dependent protein kinases involves an induction of cyclin D3 by IGF‐1 and the cyclic AMP‐elicited generation and activation of the cyclin D3‐CDK4 complex.
Adenosine plays a role in physiological and pathological conditions, and A(2) adenosine receptor (AR) expression is modified in many cardiovascular disorders. In this study, we elucidated the role of the A(2B)AR and its relationship to the A(2A)AR in coronary flow (CF) changes using A(2B) single-knockout (KO) and A(2A/2B) double-KO (DKO) mice in a Langendorff setup. We used two approaches: 1) selective and nonselective AR agonists and antagonists and 2) A(2A)KO and A(2B)KO and A(2A/2B)DKO mice. BAY 60-6583 (a selective A(2B) agonist) had no effect on CF in A(2B)KO mice, whereas it significantly increased CF in wild-type (WT) mice (maximum of 23.3 ± 9 ml·min(-1)·g(-1)). 5'-N-ethylcarboxamido adenosine (NECA; a nonselective AR agonist) increased CF in A(2B)KO mice (maximum of 34.6 ± 4.7 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Also, CGS-21680 (a selective A(2A) agonist) increased CF in A(2B)KO mice (maximum of 29 ± 1.9 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 25.1 ± 2.3 ml·min(-1)·g(-1)). SCH-58261 (an A(2A)-selective antagonist) inhibited the NECA-induced increase in CF to a significantly higher degree in A(2B)KO mice (19.3 ± 1.6 vs. 0.5 ± 0.4 ml·min(-1)·g(-1)) compared with WT mice (19 ± 3.5 vs. 3.6 ± 0.5 ml·min(-1)·g(-1)). NECA did not induce any increase in CF in A(2A/2B)DKO mice, whereas a significant increase was observed in WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Furthermore, the mitochondrial ATP-sensitive K(+) (K(ATP)) channel blocker 5-hydroxydecanoate had no effect on the NECA-induced increase in CF in WT mice, whereas the NECA-induced increase in CF in WT (17.6 ± 2 ml·min(-1)·g(-1)), A(2A)KO (12.5 ± 2.3 ml·min(-1)·g(-1)), and A(2B)KO (16.2 ± 0.8 ml·min(-1)·g(-1)) mice was significantly blunted by the K(ATP) channel blocker glibenclamide (to 0.7 ± 0.7, 2.3 ± 1.1, and 0.9 ± 0.4 ml·min(-1)·g(-1), respectively). Also, the CGS-21680-induced (22 ± 2.3 ml·min(-1)·g(-1)) and BAY 60-6583-induced (16.4 ± 1.60 ml·min(-1)·g(-1)) increase in CF in WT mice was significantly blunted by glibenclamide (to 1.2 ± 0.4 and 1.8 ± 1.2 ml·min(-1)·g(-1), respectively). In conclusion, this is the first evidence supporting the compensatory upregulation of A(2A)ARs in A(2B)KO mice and demonstrates that both A(2A)ARs and A(2B)ARs induce CF changes through K(ATP) channels. These results identify AR-mediated CF responses that may lead to better therapeutic approaches for the treatment of cardiovascular disorders.
A2A adenosine receptor (A2AAR) has been shown to suppress superoxide generation in leukocytes via the cAMP-protein kinase A (PKA) pathway. However, no study has yet explored the role of A2AAR in relation to NADPH oxidase in murine tracheas in vitro, which may lead to altered smooth muscle relaxation in asthma. Therefore, the present study evaluated the effects of A2AAR deficiency on the NADPH oxidase pathway in tracheas of A2A wild-type (WT) and A2A knockout (KO) mice. A2AWT mice were sensitized with ovalbumin (30 μg i.p.) on days 1 and 6, followed by 5% ovalbumin aerosol challenge on days 11, 12, and 13. A2AAR (gene and protein expression), cAMP, and phosphorylated PKA (p-PKA) levels were decreased in A2AWT sensitized mice compared with controls. A2AKO mice also showed decreased cAMP and p-PKA levels. A2AWT sensitized and A2AKO control mice had increased gene and protein expression of NADPH oxidase subunits (p47phox and gp91phox) compared with the controls. Tracheal relaxation to specific A2AAR agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680), decreased in A2AWT sensitized mice compared with the controls, although it was absent in A2AKO mice. Pretreatment with NADPH oxidase inhibitors apocyanin/diphenyliodonium reversed the attenuated relaxation to CGS 21680 in A2AWT sensitized tracheas, whereas specific PKA inhibitor (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid hexyl ester (KT 5720) blocked CGS 21680-induced relaxation. Tracheal reactive oxygen species (ROS) generation was also increased in A2AWT sensitized and A2AKO control mice compared with the controls. In conclusion, this study shows that A2AAR deficiency causes increased NADPH oxidase activation leading to decreased tracheal relaxation via altered cAMP-PKA signaling and ROS generation.
Pulmonary sequestration is a rare congenital anomaly that consists of abnormal pulmonary tissue for which the arterial supply is usually derived from the aorta or its major branches. Considering clinical and anatomical aspects two types of sequestration, intralobar and extralobar, have been described. The definite diagnosis requires exact visualization of the anomalous feeding and draining vessels and this condition is essential when surgical treatment is necessary because of recurrent pulmonary infections. We report on 3 cases of intralobar sequestration successfully and extensively diagnosed in adults by spiral angioCT. Our series includes one symptomatic left case confirmed by surgery and two rare fortuitous asymptomatic right cases. In the three cases, the pulmonary abnormal tissue, the arterial supply and venous drainage were clearly identified. We conclude that, probably more than MRI, spiral angio-CT can presently be considered the first choice procedure to diagnose and evaluate pulmonary sequestration; the equal performance of spiral CT in imaging lung and vessels makes classical angiography unnecessary.