Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive.Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.
Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.
The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.
A time-lapse azimuthal resistivity survey was proposed to support a fluid flow test pertinent to<br>an upcoming bio-remediation experiment. The site is in a highly industrialized area, and preliminary<br>resistivity measurements showed steady, but substantial, drift in apparent resistivities measured over<br>tens of minutes. The drift was of such magnitude that collection of time-lapse data would be precluded<br>unless a solution could be found. We hypothesized that the problem was either instrumental, was<br>induced by the electrodes, or was site specific. Internal checks of the Sting R1 indicated a properly<br>functioning instrument. We tested three different electrode types and found no particular differences in<br>the rate of drift with any of the three types chosen. A test of the resistivity system in a plastic tub filled<br>with a sodium chloride solution produced steady measurements over a span of about an hour. We<br>concluded that stray currents at the site itself must be producing the drift. We found that by averaging<br>two measurements at a given azimuth, one with electrodes positioned AMNB, the other BNMA, we<br>could obtain steady resistivity results over acceptably long durations, and so we were able to acquire<br>useable data during the flow test.
The electrical conductivity of the plasmodium of the slime-mold Brefeldia maxima (Fr.) Rost., which constitutes practically pure protoplasm, was found to be approximately equivalent under normal conditions to that of a 0.00145 N NaCl solution, and about 2.8 times that of the liquid in contact with which it developed. When bathed in 1 per cent sea water, the conductivity was much increased, becoming greater than that of the surrounding fluid. These preliminary tests are in agreement with the supposition that the protoplasm is permeable to and in equilibrium with its environment in so far as electrolytes are concerned.
Abstract This data note describes 15‐min discharge and in situ water quality data at two locations along East Fork Poplar Creek in east Tennessee, USA. Data records include temperature, gauge height, water surface elevation above mean sea level, and volumetric discharge. Water quality measurements include temperature, specific conductance, pH, dissolved oxygen (percent saturation and concentration), turbidity, and less extensive fDOM data at one site. The data records begin in 2012 at one site and 2015 at the second site; monitoring at both sites is ongoing (as of 2021). The goal of this data collection is to improve understanding of watershed functions, hydrologic dynamics, and material flux. The data will contribute to site conceptual and numerical models, exposure and risk evaluation, remediation selection and design, and performance monitoring. The data are publicly available and can be accessed via unique url or DOI.