Purpose: To evaluate the long-term safety of vascular endothelial growth factor (VEGF) suppression with sustained aflibercept expression after a single intravitreal injection (IVI) of ADVM-022, an anti-VEGF gene therapy, in non-human primates (NHPs). Methods: Non-human primates received bilateral IVI of ADVM-022, a gene therapy vector encoding aflibercept, a standard of care for the treatment of VEGF-based retinal disease. Aflibercept levels from ocular fluids and tissues were measured. Ocular inflammation was assessed by slit lamp biomicroscopy and fundoscopy. The integrity of the retinal structure was analyzed by optical coherence tomography and blue light fundus autofluorescence and electroretinography was performed to determine retinal function. Histologic evaluation of the retina was performed at the longest time point measured (2.5 years after injection). Results: Sustained expression of aflibercept was noted out to the last time point evaluated. Mild to moderate inflammatory responses were observed, which trended toward spontaneous resolution without anti-inflammatory treatment. No abnormalities in retinal structure or function were observed, as measured by optical coherence tomography and electroretinography, respectively. RPE integrity was maintained throughout the study; no histologic abnormalities were observed 2.5 years after ADVM-022 IVI. Conclusions: In non-human primates, long-term, sustained aflibercept expression and the resulting continuous VEGF suppression by a single IVI of ADVM-022, appears to be safe, with no measurable adverse effects on normal retinal structure and function evaluated out to 2.5 years. Translational Relevance: Together with the results from previous ADVM-022 preclinical studies, these data support the evaluation of this gene therapy candidate in clinical trials as a potential durable treatment for various VEGF-mediated ophthalmic disorders.
An enzyme immunoassay (EIA) was developed for detection of Human T-cell Leukemia Virus antigen in culture supernatants and cell lysates. The assay used a mouse monoclonal antibody against HTLV-I pl9 major core protein as capture antibody. It has a sensitivity of lμ.g/ml of HTLV-I protein, 250pg/ml of purified recombinant pl9 and detected pl9 in an 10-2 diluted supernatant of MT2 infected cell and in a 100 MT2 cells lysate (106 cells taken at day 7 of culture). The assay enable us to discriminate between HTLV-I and HTLV-II antigens and is reproductively negative for supernatants and cell lysates of uninfected cells and of HIV-1 infected cells. The assay was found to be more specific and 10 times more sensitive than the reverse transcriptase (RT) assay, and the EIA test became positive three days earlier than RT assay for the HTLV-I cell lines supernatants.
AAV-mediated gene therapy has shown promise for some ocular diseases when injected sub-retinally. Intravitreal AAV administration, while less invasive, is far less efficient due to the inner limiting membrane (ILM), which is a particularly profound barrier in the primate retina. Recently AAV2.7m8, which has a 10 amino acid (aa) peptide insertion in the surface exposed loop region of AAV2, was identified using in vivo directed evolution (Dalkara et al., 2013). This variant has been shown to effectively transduce outer retinal cells resulting in extensive gene expression in the non-human primate retina following intravitreal injection. The purpose of our study was to identify AAV variants that could not only penetrate the outer retina from the vitreous, but also have a favorable neutralizing antibody (nAb) titer to allow beneficial AAV-mediated gene expression. We tested whether the 10-aa peptide loop from AAV2.7m8 could be inserted into other capsid backbones, and investigated the tropism and nAb profile of these hybrid capsids. The 10-aa loop was inserted at seven different positions in the receptor binding region of loop IV of capsid 2.5T, which is a chimeric variant of the VP1 region of AAV2 and VP2 and VP3 regions of AAV5 containing a single A581T point mutation (Excoffon et al., 2009). A majority of the 2.5T/7m8 hybrid capsids were successfully packaged and resulted in varying levels of GFP transgene expression following transduction in vitro. Additionally, in vitro transduction was blocked to a lesser extent by nAbs (IVIg) when compared to AAV2, which indicates that the 2.5T/7m8 hybrids may not be impeded by preexisting immunity in human patients. Finally, significantly higher GFP expression was observed with one of the 2.5T/7m8 hybrid variants as compared to the parental 2.5T capsid, following intravitreal administration in rodents.
In several disease states, abnormal growth of blood vessels is associated with local neuronal degeneration. This is particularly true in ocular diseases such as retinal angiomatous proliferation (RAP) and macular telangiectasia (MacTel), in which, despite the absence of large-scale leakage or hemorrhage, abnormal neovascularization (NV) is associated with local neuronal dysfunction. We describe here a retinal phenotype in mice with dysfunctional receptors for VLDL (Vldlr-/- mice) that closely resembles human retinal diseases in which abnormal intra- and subretinal NV is associated with photoreceptor cell death. Such cell death was evidenced by decreased cone and, to a lesser extent, rod opsin expression and abnormal electroretinograms. Cell death in the region of intraretinal vascular abnormalities was associated with an increased presence of markers associated with oxidative stress. Oral antioxidant supplementation protected against photoreceptor degeneration and preserved retinal function, despite the continued presence of abnormal intra- and subretinal vessels. What we believe to be novel, Müller cell-based, virally mediated delivery of neurotrophic compounds specifically to sites of NV was also neuroprotective. These observations demonstrate that neuronal loss secondary to NV can be prevented by the use of simple antioxidant dietary measures or cell-based delivery of neurotrophic factors, even when the underlying vascular phenotype is not altered.
Nerve growth factor (NGF) has been shown to promote survival and function of cholinergic neurons in the basal forebrain in various models of neuronal degeneration in rodents and primates. We examined whether a regulatable in vivo expression system can control the survival of cholinergic neurons after injury, using a tetracycline-regulated promoter ("tet-off" system) to modulate lentiviral NGF gene delivery. Two weeks after lesions to cholinergic neurons, significant cell rescue (65+/-8% neuron survival; P<0.005 compared to controls) was observed when NGF expression was activated. Treatment with the tetracycline analog doxycycline to turn gene expression "off" resulted in a significant loss of cholinergic neurons (only 37+/-5% neurons remained, an amount that did not differ from untreated, lesioned controls). Animals treated with a constitutively active and robust nonregulated NGF expression system showed the same degree of neuronal rescue (73+/-8%) as animals treated with activated tet-regulated vectors. ELISA measurements confirmed that oral treatment of animals with doxycycline reduced NGF protein levels to levels in untreated control subjects. These data demonstrate for the first time that NGF delivery by lentiviral gene transfer using tetracycline-regulated promoters can completely regulate neuronal rescue and protein production in the brain.
ABSTRACT A number of human immunodeficiency type 1 (HIV-1)-based vectors have recently been shown to transduce nondividing cells in vivo as well as in vitro. However, if these vectors are to be considered for eventual clinical use, a major consideration is to reduce the probability of unintended generation of replication-competent virus. This can be achieved by eliminating viral genetic elements involved in the generation of replication-competent virus without impairing vector production. We have designed a system to transiently produce HIV-1-based vectors by using expression plasmids encoding Gag, Pol, and Tat of HIV-1 under the control of the cytomegalovirus immediate-early promoter. Our data show that the best vector yield is achieved in the presence of the Rev/Rev-responsive element (RRE) system. However, the constitutive transport element of Mason-Pfizer monkey virus can substitute for RRE and Rev at least to some extent, whereas the posttranscriptional regulatory element of human hepatitis B virus appeared to be inefficient. In addition, we show that high-titer virus preparations can be obtained in the presence of sodium butyrate, which activates the expression of both the packaging construct and the vector genome. Finally, our results suggest that efficient infectivity of vectors defective in the accessory proteins Vif, Vpr, Vpu, and Nef depends on the nature of the target cells.
Neurturin (NTN) is a potent survival factor for midbrain dopaminergic neurons. CERE-120, an adeno-associated virus type 2 (AAV2) vector encoding human NTN (AAV2-NTN), is currently being developed as a potential therapy for Parkinson's disease. This study examined the bioactivity and safety/tolerability of AAV2-NTN in the aged monkey model of nigrostriatal dopamine insufficiency. Aged rhesus monkeys received unilateral injections of AAV2-NTN into the caudate and putamen, with each animal therefore serving as its own control. Robust expression of NTN within the nigrostriatal system was observed 8 months postadministration. (18)F-fluorodopa imaging using positron emission tomography revealed statistically significant increases in (18)F-fluorodopa uptake in the injected striatum compared with the uninjected side at 4 and 8 months. In addition, at 8 months postadministration, a significant enhancement in tyrosine hydroxylase immunoreactive fibers and an increase in the number of tyrosine hydroxylase immunoreactive cells was observed in the AAV2-NTN injected striatum compared with the uninjected side. Robust activation of phosphorylated extracellular signal-regulated kinase immunoreactivity in the substantia nigra was also observed. Histopathological analyses revealed no adverse effects of AAV2-NTN in the brain. Collectively, these results are consistent with the neurotrophic effects of NTN on the dopaminergic nigrostriatal system and extend the growing body of evidence supporting the concept that AAV2-NTN may have therapeutic benefit for Parkinson's disease.