ABSTRACT We present specific star formation rates (sSFRs) for 40 ultraviolet (UV)-bright galaxies at z ∼ 7–8 observed as part of the Reionization Era Bright Emission Line Survey (REBELS) Atacama Large Millimeter/submillimeter Array (ALMA) large programme. The sSFRs are derived using improved star formation rate (SFR) calibrations and spectral energy distribution (SED)-based stellar masses, made possible by measurements of far-infrared (FIR) continuum emission and [C ii]-based spectroscopic redshifts. The median sSFR of the sample is $18_{-5}^{+7}$ Gyr−1, significantly larger than literature measurements lacking constraints in the FIR, reflecting the larger obscured SFRs derived from the dust continuum relative to that implied by the UV+optical SED. We suggest that such differences may reflect spatial variations in dust across these luminous galaxies, with the component dominating the FIR distinct from that dominating the UV. We demonstrate that the inferred stellar masses (and hence sSFRs) are strongly dependent on the assumed star formation history in reionization-era galaxies. When large sSFR galaxies (a population that is common at z > 6) are modelled with non-parametric star formation histories, the derived stellar masses can increase by an order of magnitude relative to constant star formation models, owing to the presence of a significant old stellar population that is outshined by the recent burst. The [C ii] line widths in the largest sSFR systems are often very broad, suggesting dynamical masses capable of accommodating an old stellar population suggested by non-parametric models. Regardless of these systematic uncertainties among derived parameters, we find that sSFRs increase rapidly toward higher redshifts for massive galaxies (9.6 < log (M*/M⊙) < 9.8), evolving as (1 + z)1.7 ± 0.3, broadly consistent with expectations from the evolving baryon accretion rates.
We report the first successful ALMA follow-up observations of a secure $z > 10$ JWST-selected galaxy, by robustly detecting ($6.6\sigma$) the [OIII]$_{88\mu m}\,$ line in JADES-GS-z14-0 (hereafter GS-z14). The ALMA detection yields a spectroscopic redshift of $z=14.1793\pm0.0007$, and increases the precision on the prior redshift measurement of $z=14.32_{-0.20}^{+0.08}$ from NIRSpec by $\gtrsim$180$\times$. Moreover, the redshift is consistent with that previously determined from a tentative detection ($3.6\sigma$) of CIII]$_{1907,1909}$ ($z=14.178\pm0.013$), solidifying the redshift determination via multiple line detections. We measure a line luminosity of $L_\mathrm{[OIII]88} = (2.1 \pm 0.5)\times10^8\,L_\odot$, placing GS-z14 at the lower end, but within the scatter of, the local $L_\mathrm{[OIII]88}$-star formation rate relation. No dust continuum from GS-z14 is detected, suggesting an upper limit on the dust-to-stellar mass ratio of $< 2 \times 10^{-3}$, consistent with dust production from supernovae with a yield $y_d < 0.3\,M_\odot$. Combining a previous JWST/MIRI photometric measurement of the [OIII]$\lambda\lambda$4959,5007$\mathrm{\mathring{A}}$ and H$\beta$ lines with Cloudy models, we find GS-z14 to be surprisingly metal-enriched ($Z\sim0.05 - 0.2\,Z_\odot$) a mere $300\,\mathrm{Myr}$ after the Big Bang. The detection of a bright oxygen line in GS-z14 thus reinforces the notion that galaxies in the early Universe undergo rapid evolution.
We make use of ALMA continuum observations of $15$ luminous Lyman-break galaxies at $z$$\sim$$7$$-$$8$ to probe their dust-obscured star-formation. These observations are sensitive enough to probe to obscured SFRs of $20$ $M_{\odot}$$/$$yr$ ($3\sigma$). Six of the targeted galaxies show significant ($\geq$$3$$\sigma$) dust continuum detections, more than doubling the number of known dust-detected galaxies at $z$$>$$6.5$. Their IR luminosities range from $2.7$$\times$$10^{11}$ $L_{\odot}$ to $1.1$$\times$$10^{12}$ $L_{\odot}$, equivalent to obscured SFRs of $20$ to $105$ $M_{\odot}$$/$$yr$. We use our results to quantify the correlation of the infrared excess IRX on the UV-continuum slope $\beta_{UV}$ and stellar mass. Our results are most consistent with an SMC attenuation curve for intrinsic $UV$-slopes $\beta_{UV,intr}$ of $-2.63$ and most consistent with an attenuation curve in-between SMC and Calzetti for $\beta_{UV,intr}$ slopes of $-2.23$, assuming a dust temperature $T_d$ of $50$ K. Our fiducial IRX-stellar mass results at $z$$\sim$$7$$-$$8$ are consistent with marginal evolution from $z$$\sim$$0$. We then show how both results depend on $T_d$. For our six dust-detected sources, we estimate their dust masses and find that they are consistent with dust production from SNe if the dust destruction is low ($<$$90$%). Finally we determine the contribution of dust-obscured star formation to the star formation rate density for $UV$ luminous ($<$$-$$21.5$ mag: $\gtrsim$$1.7$$L_{UV} ^*$) $z$$\sim$$7$$-$$8$ galaxies, finding that the total SFR density at $z$$\sim$$7$ and $z$$\sim$$8$ from bright galaxies is $0.18_{-0.10}^{+0.08}$ dex and $0.20_{-0.09}^{+0.05}$ dex higher, respectively, i.e. $\sim$$\frac{1}{3}$ of the star formation in $\gtrsim$$1.7$$L_{UV} ^*$ galaxies at $z$$\sim$$7$$-$$8$ is obscured by dust.
A key to understanding the formation of the first galaxies is to quantify the content of the molecular gas as the fuel for star formation activity through the epoch of reionization. In this paper, we use the 158$\mu$m [CII] fine-structure emission line as a tracer of the molecular gas in the interstellar medium (ISM) in a sample of $z=6.5-7.5$ galaxies recently unveiled by the Reionization Era Bright Line Emission Survey, REBELS, with the Atacama Large Millimeter/submillimeter Array. We find substantial amounts of molecular gas ($\sim10^{10.5}\ M_\odot$) comparable to those found in lower redshift galaxies for similar stellar masses ($\sim10^{10}\ M_\odot$). The REBELS galaxies appear to follow the standard scaling relations of molecular gas to stellar mass ratio ($\mu_{\rm mol}$) and gas depletion timescale ($t_{\rm dep}$) with distance to the star-forming main-sequence expected from extrapolations of $z\sim1-4$ observations. We find median values at $z\sim7$ of $\mu_{\rm mol}=2.6_{-1.4}^{4.1}$ and $t_{\rm dep}=0.5_{-0.14}^{+0.26}$ Gyr, indicating that the baryonic content of these galaxies is gas-phase dominated and little evolution from $z\sim7$ to 4. Our measurements of the cosmic density of molecular gas, log$(\rho_{\rm mol}/(M_\odot {\rm Mpc}^{-3}))=6.34^{+0.34}_{-0.31}$, indicate a steady increase by an order of magnitude from $z\sim7$ to 4.
ABSTRACT We present high-resolution ($\sim 0.14$ arcsec = 710 pc) Atacama Large Millimetre/submillimetre Array [C ii] 158 $\mu$m and dust continuum follow-up observations of REBELS-25, a [C ii]-luminous ($L_{\mathrm{[CII]}}=(1.7\pm 0.2)\times 10^9\, \mathrm{L_{\odot }}$) galaxy at redshift $z=7.3065\pm 0.0001$. These high-resolution, high signal-to-noise observations allow us to study the sub-kpc morphology and kinematics of this massive ($M_* = 8^{+4}_{-2} \times 10^9 \mathrm{{\rm M}_{\odot }}$) star-forming (SFR$_{\mathrm{UV+IR}} = 199^{+101}_{-63} \mathrm{{\rm M}_{\odot }} \mathrm{yr}^{-1}$) galaxy in the Epoch of Reionization. By modelling the kinematics with $^{\mathrm{3D}}$BAROLO, we find it has a low-velocity dispersion ($\bar{\sigma } = 33^{+9}_{-7}$ km s$^{-1}$) and a high ratio of ordered-to-random motion ($V_{\mathrm{rot, ~max}}/\bar{\sigma } = 11 ^{+6}_{-5}$), indicating that REBELS-25 is a dynamically cold disc. Additionally, we find that the [C ii] distribution is well fit by a near-exponential disc model, with a Sérsic index, n, of $1.3 \pm 0.2$, and we see tentative evidence of more complex non-axisymmetric structures suggestive of a bar in the [C ii] and dust continuum emission. By comparing to other high spatial resolution cold gas kinematic studies, we find that dynamically cold discs seem to be more common in the high-redshift Universe than expected based on prevailing galaxy formation theories, which typically predict more turbulent and dispersion-dominated galaxies in the early Universe as an outcome of merger activity, gas accretion, and more intense feedback. This higher degree of rotational support seems instead to be consistent with recent cosmological simulations that have highlighted the contrast between cold and warm ionized gas tracers, particularly for massive galaxies. We therefore show that dynamically settled disc galaxies can form as early as 700 Myr after the big bang
ABSTRACT We investigate the degree of dust obscured star formation in 49 massive (log10(M⋆/M⊙) > 9) Lyman-break galaxies (LBGs) at z = 6.5–8 observed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Reionization Era Bright Emission Line Survey (REBELS) large program. By creating deep stacks of the photometric data and the REBELS ALMA measurements we determine the average rest-frame ultraviolet (UV), optical, and far-infrared (FIR) properties which reveal a significant fraction (fobs = 0.4–0.7) of obscured star formation, consistent with previous studies. From measurements of the rest-frame UV slope, we find that the brightest LBGs at these redshifts show bluer (β ≃ −2.2) colours than expected from an extrapolation of the colour–magnitude relation found at fainter magnitudes. Assuming a modified blackbody spectral energy distribution (SED) in the FIR (with dust temperature of $T_{\rm d} = 46\, {\rm K}$ and βd = 2.0), we find that the REBELS sources are in agreement with the local ‘Calzetti-like’ starburst Infrared-excess (IRX)–β relation. By re-analysing the data available for 108 galaxies at z ≃ 4–6 from the ALMA Large Program to Investigate C+ at Early Times (ALPINE) using a consistent methodology and assumed FIR SED, we show that from z ≃ 4–8, massive galaxies selected in the rest-frame UV have no appreciable evolution in their derived IRX–β relation. When comparing the IRX–M⋆ relation derived from the combined ALPINE and REBELS sample to relations established at z < 4, we find a deficit in the IRX, indicating that at z > 4 the proportion of obscured star formation is lower by a factor of ≳ 3 at a given a M⋆. Our IRX–β results are in good agreement with the high-redshift predictions of simulations and semi-analytic models for z ≃ 7 galaxies with similar stellar masses and star formation rates.
Abstract The Reionization Era Bright Emission Line Survey (REBELS) is a cycle-7 ALMA Large Program (LP) that is identifying and performing a first characterization of many of the most luminous star-forming galaxies known in the z > 6.5 universe. REBELS is providing this probe by systematically scanning 40 of the brightest UV-selected galaxies identified over a 7 deg 2 area for bright [C ii ] 158 μ m and [O iii ] 88 μ m lines and dust-continuum emission. Selection of the 40 REBELS targets was done by combining our own and other photometric selections, each of which is subject to extensive vetting using three completely independent sets of photometry and template-fitting codes. Building on the observational strategy deployed in two pilot programs, we are increasing the number of massive interstellar medium (ISM) reservoirs known at z > 6.5 by ∼4–5× to >30. In this manuscript, we motivate the observational strategy deployed in the REBELS program and present initial results. Based on the first-year observations, 18 highly significant ≥ 7 σ [C ii ] 158 μ m lines have already been discovered, the bulk of which (13/18) also show ≥3.3 σ dust-continuum emission. These newly discovered lines more than triple the number of bright ISM-cooling lines known in the z > 6.5 universe, such that the number of ALMA-derived redshifts at z > 6.5 rival Ly α discoveries. An analysis of the completeness of our search results versus star formation rate (SFR) suggests an ∼79% efficiency in scanning for [C ii ] 158 μ m when the SFR UV+IR is >28 M ⊙ yr −1 . These new LP results further demonstrate ALMA’s efficiency as a “redshift machine,” particularly in the Epoch of Reionization.
We present high resolution ($\sim0.14$" = 710 pc) ALMA [CII] 158$\mu$m and dust continuum follow-up observations of REBELS-25, a [CII]-luminous ($L_{\mathrm{[CII]}}=(1.7\pm0.2)\times 10^9 \mathrm{L_{\odot}}$) galaxy at redshift $z=7.3065\pm0.0001$. These high resolution, high signal-to-noise observations allow us to study the sub-kpc morphology and kinematics of this massive ($M_* = 8^{+4}_{-2} \times 10^9 \mathrm{M_{\odot}}$) star-forming (SFR$_{\mathrm{UV+IR}} = 199^{+101}_{-63} \mathrm{M_{\odot}} \mathrm{yr}^{-1}$) galaxy in the Epoch of Reionisation. By modelling the kinematics with $^{\mathrm{3D}}$BAROLO, we find it has a low velocity dispersion ($\bar{\sigma} = 33 \pm 9$ km s$^{-1}$) and a high ratio of ordered-to-random motion ($V_{\mathrm{rot, ~max}}/\bar{\sigma} = 11 ^{+8}_{-4}$), indicating that REBELS-25 is a dynamically cold disc. Additionally, we find that the [CII] distribution is well fit by a near-exponential disc model, with a S\'ersic index, $n$, of $1.3 \pm 0.2$, and we see tentative evidence of more complex non-axisymmetric structures suggestive of a bar in the [CII] and dust continuum emission. By comparing to other high spatial resolution cold gas kinematic studies, we find that dynamically cold discs seem to be more common in the high redshift Universe than expected based on prevailing galaxy formation theories, which typically predict more turbulent and dispersion-dominated galaxies in the early Universe as an outcome of merger activity, gas accretion and more intense feedback. This higher degree of rotational support seems instead to be consistent with recent cosmological simulations that have highlighted the contrast between cold and warm ionised gas tracers, particularly for massive galaxies. We therefore show that dynamically settled disc galaxies can form as early as 700 Myr after the Big Bang.