The role of brain insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in neuroprotection was further investigated using in vitro and in vivo models of cerebral ischemia by assessing the effects of IGF-I, IGF-II, and high affinity IGFBP ligand inhibitors (the peptide [Leu 24, 59, 60 , Ala 31 ]hIGF-I (IGFBP-LI) and the small molecule NBI-31772 (1-(3,4-dihydroxybenzoyl)-3-hydroxycarbonyl-6, 7-dihydroxyisoquinoline), which pharmacologically displace and elevate endogenous, bioactive IGFs from IGFBPs. Treatment with IGF-I, IGF-II, or IGFBP-LI (2 μg/mL) significantly ( P < 0.05) reduced CA1 damage in organotypic hippocampal cultures resulting from 35 minutes of oxygen and glucose deprivation by 71%, 60%, and 40%, respectively. In the subtemporal middle cerebral artery occlusion (MCAO) model of focal ischemia, intracerebroventricular (icv) administration of IGF-I and IGF-II at the time of artery occlusion reduced ischemic brain damage in a dose-dependent manner, with maximum reductions in total infarct size of 37% ( P < 0.01) and 38% ( P < 0.01), respectively. In this model of MCAO, icv administration of NBI-31772 at the time of ischemia onset also dose-dependently reduced infarct size, and the highest dose (100 μg) significantly reduced both total (by 40%, P < 0.01) and cortical (by 43%, P < 0.05) infarct volume. In the intraluminal suture MCAO model, administration of NBI-31772 (50 μg icv) at the time of artery occlusion reduced both cortical infarct volume (by 40%, P < 0.01) and brain swelling (by 24%, P < 0.05), and it was still effective when treatment was delayed up to 3 hours after the induction of ischemia. These results further define the neuroprotective properties of IGFs and IGFBP ligand inhibitors in experimental models of cerebral ischemia.
CC chemokine receptor 7 (CCR7) is involved in the initiation of immune responses by mediating the migration of naïve T cells and mature dendritic cells to T-cell-rich zones of secondary lymphoid organs where antigen presentation occurs. To address whether CCR7 plays a role in the development of autoimmunity, we induced experimental autoimmune encephalomyelitis in CCR7-deficient mice on a C57BL/6 background (CCR7(-/-)) using the neuroantigen, myelin oligodendrocyte glycoprotein 35-55 amino acid peptide (MOG((35-55))) and Bordetella pertussis toxin (PTX). CCR7(-/-) mice acquired disease with an intensity similar to wild-type littermates. MOG((35-55))-specific lymphocyte responses were dominant in the spleen of CCR7(-/-) mice, rather than in lymph nodes as observed in wild-type mice. These results indicate that effective immune responses (with altered kinetics) can develop in the absence of CCR7 but develop in the spleen rather than lymph nodes as CCR7 is necessary for T and dendritic cells to enter lymph nodes.
Fractalkine is a unique chemokine reported to be constitutively expressed by neurons. Its only receptor, CX3CR1, is expressed by microglia. Little is known about the expression of fractalkine and CX3CR1 in spinal cord. Given that peripheral nerve inflammation and/or injury gives rise to neuropathic pain, and neuropathic pain may be partially mediated by spinal cord glial activation and consequent glial proinflammatory cytokine release, there must be a signal released by affected neurons that triggers the activation of glia. We sought to determine whether there is anatomical evidence implicating spinal fractalkine as such a neuron-to-glia signal. We mapped the regional and cellular localization of fractalkine and CX3CR1 in the rat spinal cord and dorsal root ganglion, under basal conditions and following induction of neuropathic pain, employing both an inflammatory (sciatic inflammatory neuropathy; SIN) as well as a traumatic (chronic constriction injury; CCI) model. Fractalkine immunoreactivity and mRNA were observed in neurons, but not glia, in the rat spinal cord and dorsal root ganglia, and levels did not change following either CCI or SIN. By contrast, CX3CR1 was expressed by microglia in the basal state, and the microglial cellular concentration was up-regulated in a regionally specific manner in response to neuropathy. CX3CR1-expressing cells were identified as microglia by their cellular morphology and positive OX-42 and CD4 immunostaining. The cellular distribution of fractalkine and CX3CR1 in the spinal circuit associated with nociceptive transmission supports a potential role in the mechanisms that contribute to the exaggerated pain state in these models of neuropathy.
The neuroprotective effects of a systemically active, highly selective, corticotropin-releasing factor-1 (CRF 1 ) receptor antagonist, R121920 ((7-(dipropylamino)-2,5-dimethyl-3- [2-(dimethylamino)-5-pyridyl] pyrazolo [1,5-a] pyrimidine), was assessed in two rat models of permanent focal cerebral ischemia, where the middle cerebral artery (MCA) was occluded either through the subtemporal approach or using the intraluminal suture technique. R121920 rapidly crossed the blood–brain barrier after intravenous (IV) bolus administration (10 mg/kg), with peak brain concentrations at 5 minutes (2.26 ± 0.40 μg/mL), which were approximately 2-fold greater than those in plasma (0.98 ± 0.24 μg/mL). Treatment with R121920 (10 mg/kg IV followed by 5 mg/kg subcutaneously at hourly intervals for 4 hours) significantly ( P < 0.001) reduced total (by 40%) and cortical (by 37%) infarct volume at 24 hours after subtemporal MCA occlusion (MCAO). In the intraluminal suture MCAO model, IV administration of R121920 (10 mg/kg) at the time of ischemia onset (and at multiple times thereafter) reduced both hemispheric infarct volume (by 34%, P < 0.001) and brain swelling (by 50%, P < 0.001) when assessed at 24 hours. In this model of focal ischemia, significant reduction ( P < 0.05) in both outcome measures was obtained when R121920 administration was delayed up to 1 hour after MCAO. These results further define the antiischemic properties of selective CRF 1 antagonists in two experimental models of permanent focal cerebral ischemia.
Clinically used benzodiazepine and nonbenzodiazepine sedative-hypnotic agents for the treatment of insomnia produce their therapeutic effects through allosteric enhancement of the effects of the inhibitory neurotransmitter GABA at the GABAA receptor. Indiplon is a novel pyrazolopyrimidine sedative-hypnotic agent, currently in development for insomnia. Using radioligand binding studies, indiplon inhibited the binding of [3H]Ro 15-1788 (flumazenil) to rat cerebellar and cerebral cortex membranes with high affinity (Ki values of 0.55 and 0.45 nM, respectively). [3H]Indiplon binding to rat cerebellar and cerebral cortex membranes was reversible and of high affinity, with KD values of 1.01 and 0.45 nM, respectively, with a pharmacological specificity consistent with preferential labeling of GABAA receptors containing α1 subunits. In "GABA shift" experiments and in measurements of GABA-induced chloride conductance in rat cortical neurons in culture, indiplon behaved as an efficacious potentiator of GABAA receptor function. In both the radioligand binding and electrophysiological experiments, indiplon had a higher affinity than zolpidem or zaleplon. These in vitro properties are consistent with the in vivo properties of indiplon as an effective sedative-hypnotic acting through allosteric potentiation of the GABAA receptor.
Abstract Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock‐out animals and antisense techniques have been used to study their specific roles. Here we used WAY‐855, a GLT‐1‐preferring blocker, to assess the role of GLT‐1 in rat hippocampus. GLT‐1 was the most abundant transporter in the hippocampus at the mRNA level. According to [ 3 H]‐ l ‐glutamate uptake data, GLT‐1 was responsible for approximately 80% of the GLAST‐, GLT‐1‐, and EAAC1‐mediated uptake that occurs within dissociated hippocampal tissue, yet when this transporter was preferentially blocked for 120 h with WAY‐855 (100 µ m ), no significant neurotoxicity was observed in hippocampal slices. This is in stark contrast to results obtained with TBOA, a broad‐spectrum transport blocker, which, at concentrations that caused a similar inhibition of glutamate uptake (10 and 30 µ m ), caused substantial neuronal death when exposed to the slices for 24 h or longer. Likewise, WAY‐855, did not significantly exacerbate neurotoxicity associated with simulated ischemia, whereas TBOA did. Finally, intrahippocampal microinjection of WAY‐855 (200 and 300 nmol) in vivo resulted in marginal damage compared with TBOA (20 and 200 nmol), which killed the majority of both CA1–4 pyramidal cells and dentate gyrus granule cells. These results indicate that selective inhibition of GLT‐1 is insufficient to provoke glutamate build‐up, leading to NMDA receptor‐mediated neurotoxic effects, and suggest a prominent role of GLAST and/or EAAC1 in extracellular glutamate maintenance.