Abstract Four different microbially produced macrolide complexes have been separated and purified by chromatography on the Ito Horizontal Coil Planet Centrifuge. These antibiotics represent different subclasses which present a variety of separation problems. The separations required high resolution capabilities under mild chromatographic conditions.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid–liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by 1H NMR, LC-MS, and HiFSA-based NMR fingerprinting.
Curcuma longa (turmeric) has a long ethnomedical background for common ailments, and Dietary Supplements (DS) labelled as “Curcumin” (CDS) are a highly visible portion of today’s selfmedication market. Due to cost pressure, these CDS products are affected by economically motivated adulteration with synthetic curcumin and are associated with unexpected toxicological issues due to “residual” impurities. Using a combination of targeted and untargeted (phyto)chemical analysis, this study investigated the botanical integrity of two commercial “turmeric” CDS with vitamin and other additives that were associated with reported clinical cases of hepatotoxicity. Analyzing multi-solvent extracts of the CDS by 100% quantitative 1H NMR (qHNMR), alone and in combination with countercurrent separation (CCS), provided chemical fingerprints that allowed both the targeted identification and quantification of declared components and the untargeted recognition of adulteration. While confirming the presence of curcumin as a major constituent, the universal detection capability of NMR identified significant residual impurities. While the loss free nature of CCS captured a wide polarity range of declared and unwanted chemical components and increased dynamic range, (q)HNMR determined their mass proportions and chemical constitutions. The results demonstrate that NMR can recognize undeclared constituents even if they represent a relatively minor gap in the mass balance of a DS product. The chemical information associated with the missing 4.8% and 7.4% (m/m) in the two commercial samples, exhibiting an otherwise adequate curcumin content of 95.2% and 92.6%, pointed to a product integrity issue and adulteration with undeclared synthetic curcumin. Impurities from synthesis are most plausibly the cause of the observed adverse clinical effects. The study exemplifies how the simultaneously targeted and untargeted analytical principle of 100% qHNMR method, performed with entry-level instrumentation (400 MHz), can enhance the safety of DS by identifying adulterated, non-natural “natural” products
The novel microbial metabolite diazepinomicin/ECO-4601 (1) has a unique tricyclic dibenzodiazepinone core, which was unprecedented among microbial metabolites. Labeled feeding experiments indicated that the carbocyclic ring and the ring nitrogen of tryptophan could be incorporated via degradation to the 3-hydroxyanthranilic acid, forming ring A and the nonamide nitrogen of 1. Genomic analysis of the biosynthetic locus indicated that the farnesyl side chain was mevalonate derived, the 3-hydroxyanthranilic acid moiety could be formed directly from chorismate, and the third ring was constructed via 3-amino-5-hydroxybenzoic acid. Successful incorporation of 4,6-D2-3-hydroxyanthranilic acid into ring A of 1 via feeding experiments supports the genetic analysis and the allocation of the locus to this biosynthesis. These studies highlight the enzymatic complexity needed to produce this structural type, which is rare in nature.