To investigate the relationship between vestibular loss associated with aging and age-related decline in visuospatial function.Cross-sectional analysis within a prospective cohort study.Baltimore Longitudinal Study of Aging (BLSA).Community-dwelling BLSA participants with a mean age of 72 (range 26-91) (N = 183).Vestibular function was measured using vestibular-evoked myogenic potentials. Visuospatial cognitive tests included Card Rotations, Purdue Pegboard, Benton Visual Retention Test, and Trail-Making Test Parts A and B. Tests of executive function, memory, and attention were also considered.Participants underwent vestibular and cognitive function testing. In multiple linear regression analyses, poorer vestibular function was associated with poorer performance on Card Rotations (P = .001), Purdue Pegboard (P = .005), Benton Visual Retention Test (P = 0.008), and Trail-Making Test Part B (P = .04). Performance on tests of executive function and verbal memory were not significantly associated with vestibular function. Exploratory factor analyses in a subgroup of participants who underwent all cognitive tests identified three latent cognitive abilities: visuospatial ability, verbal memory, and working memory and attention. Vestibular loss was significantly associated with lower visuospatial and working memory and attention factor scores.Significant consistent associations between vestibular function and tests of visuospatial ability were observed in a sample of community-dwelling adults. Impairment in visuospatial skills is often one of the first signs of dementia and Alzheimer's disease. Further longitudinal studies are needed to evaluate whether the relationship between vestibular function and visuospatial ability is causal.
BACKGROUNDBilateral loss of vestibular (inner ear inertial) sensation causes chronically blurred vision during head movement, postural instability, and increased fall risk. Individuals who fail to compensate despite rehabilitation therapy have no adequate treatment options. Analogous to hearing restoration via cochlear implants, prosthetic electrical stimulation of vestibular nerve branches to encode head motion has garnered interest as a potential treatment, but prior studies in humans have not included continuous long-term stimulation or 3D binocular vestibulo-ocular reflex (VOR) oculography, without which one cannot determine whether an implant selectively stimulates the implanted ear's 3 semicircular canals.METHODSWe report binocular 3D VOR responses of 4 human subjects with ototoxic bilateral vestibular loss unilaterally implanted with a Labyrinth Devices Multichannel Vestibular Implant System vestibular implant, which provides continuous, long-term, motion-modulated prosthetic stimulation via electrodes in 3 semicircular canals.RESULTSInitiation of prosthetic stimulation evoked nystagmus that decayed within 30 minutes. Stimulation targeting 1 canal produced 3D VOR responses approximately aligned with that canal's anatomic axis. Targeting multiple canals yielded responses aligned with a vector sum of individual responses. Over 350-812 days of continuous 24 h/d use, modulated electrical stimulation produced stable VOR responses that grew with stimulus intensity and aligned approximately with any specified 3D head rotation axis.CONCLUSIONThese results demonstrate that a vestibular implant can selectively, continuously, and chronically provide artificial sensory input to all 3 implanted semicircular canals in individuals disabled by bilateral vestibular loss, driving reflexive VOR eye movements that approximately align in 3D with the head motion axis encoded by the implant.TRIAL REGISTRATIONClinicalTrials.gov: NCT02725463.FUNDINGNIH/National Institute on Deafness and Other Communication Disorders: R01DC013536 and 2T32DC000023; Labyrinth Devices, LLC; and Med-El GmbH.
We investigated if current-generation computed tomographic (CT) scanners have the resolution required to objectively detect bone structure defects as small as 0.1 mm. In addition, we propose that our method is able to predict a possible dehiscence in a semicircular canal.In semicircular canal dehiscence (SCD), the bone overlying the superior canal (SC) is partially absent, causing vertigo, autophony, hyperacusis or hearing loss. Diagnosis of SCD is typically based on multi-slice computed tomography (MSCT) images combined with the consideration of clinical signs and symptoms. Recent studies have shown that MSCT tends to overestimate the size of dehiscences and may skew the diagnosis towards dehiscence when a thin bone layer remains. Evaluations of CT scans for clinical application are typically observer based.We developed a method of objectively evaluating the resolution of CT scanners. We did this for 2 types of computed tomography: MSCT, and cone beam computed tomography (CBCT), which have been reported to have a higher resolution for temporal bone scans. For the evaluation and comparison of image accuracy between different CT scanners and protocols, we built a bone cement phantom containing small, well-defined structural defects (diameter, 0.1-0.4 mm). These small inhomogeneities could reliably be detected by comparing the variances of radiodensities of a region of interest (i.e., a region containing a hole) with a homogenous region. The Fligner-Killeen test was used to predict the presence or absence of a hole (p ≥ 0.05). For our second goal, that is, to see how this technique could be applied to the detection of a possible dehiscence in a SC, a cadaveric head specimen was used to create an anatomic model for a borderline SCD; the SC was drilled to the point of translucency. After semi-automatically fitting the location of the canal, our variance-based approach allowed a clear, significant detection of the thin remaining bone layer.Our approach of statistical noise analysis on bone cement phantoms allowed us to distinguish real irregularities from measured image noise or reconstruction errors. We have shown that with computed tomography, an approach comparing radiodensity variance in regions of interest is capable of detecting inhomogeneities down to 0.1 mm (p ≤ 0.0001).Our analysis of data from the cadaveric head specimen demonstrates that this approach can be used to objectively detect thin layers of bone overlying an SC. This should provide the basis for using this approach for a semi-automated, objective detection of SCD.
Conclusion: vOCR can detect loss of otolith-ocular function without specifying the side of vestibular loss. Since vOCR is measured with a simple head tilt maneuver, it can be potentially used as a bedside clinical test in combination with video head impulse test.Objective: Video-oculography (VOG) goggles are being integrated into the bedside assessment of patients with vestibular disorders. Lacking, however, is a method to evaluate otolith function. This study validated a VOG test for loss of otolith function.Methods: VOG was used to measure ocular counter-roll (vOCR) in 12 healthy controls, 14 patients with unilateral vestibular loss (UVL), and six patients with bilateral vestibular loss (BVL) with a static lateral head tilt of 30°. The results were compared with vestibular evoked myogenic potentials (VEMP), a widely-used laboratory test of otolith function.Results: The average vOCR for healthy controls (4.6°) was significantly different from UVL (2.7°) and BVL (1.6°) patients (p < 0.0001). The vOCR and VEMP measurements were correlated across subjects, especially the click and tap oVEMPs (click oVEMP R = 0.45, tap oVEMP R = 0.51; p < 0.0003). The receiver operator characteristic (ROC) analysis showed that vOCR and VEMPs detected loss of otolith function equally well. The best threshold for vOCR to detect vestibular loss was at 3°. The vOCR values from the side of vestibular loss and the healthy side were not different in UVL patients (2.53° vs 2.8°; p = 0.59).