Revascularisation of transplanted islets is an essential prerequisite for graft survival and function. However, current islet isolation procedures deprive the islets of endothelial tubulets. This may have a detrimental effect on the revascularisation process of islets following transplantation. We hypothesise that modification of the isolation procedure that preserves islet endothelial vessels may improve the islet revascularisation process following transplantation. Here, we present a modified islet isolation method by which a substantial amount of endothelial cells still attached to the islets could be preserved. The islets with preserved endothelial cells isolated by this method were revascularised within 3 days, not observed in islets isolated by standard methods. Further, we observed that grafts of islets isolated by standard methods had more patches of dead tissue than islet grafts obtained by the modified method, indicating that attached endothelial cells may play an important role in the islet revascularisation process and potentially help to improve the transplantation outcome.
The role of cannabinoid receptors in human islets of Langerhans has not been investigated in any detail, so the current study examined CB1 and CB2 receptor expression by human islets and the effects of pharmacological cannabinoid receptor agonists and antagonists on insulin secretion.Human islets were isolated from pancreases retrieved from heart-beating organ donors. Messenger RNAs encoding human CB1 and CB2 receptors were amplified from human islet RNA by RT-PCR and receptor localization within islets was identified by immunohistochemistry. Dynamic insulin secretion from human islets perifused with buffers supplemented with CB1 and CB2 receptor agonists and antagonists was quantified by radioimmunoassay.RT-PCR showed that both CB1 and CB2 receptors are expressed by human islets and immunohistochemistry indicated that receptor expression co-localized with insulin-expressing β-cells. Perifusion experiments using isolated human islets showed that insulin secretion was reversibly stimulated by both CB1 and CB2 receptor agonists, with CB1 receptor activation associated with increased basal secretion whereas CB2 receptors were coupled to initiation and potentiation of insulin secretion. Antagonists at CB1 (N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and CB2 (N-(1,3-Benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinoline carboxamide) receptors failed to inhibit the stimulatory effects of the respective agonists and, unexpectedly, reversibly stimulated insulin secretion.These data confirm the expression of CB1 and CB2 receptors by human islets and indicate that both receptor subtypes are coupled to the stimulation of insulin secretion. They also implicate involvement of CB1/2 receptor-independent pathways in the antagonist-induced stimulatory effects.
Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.
Arabidopsis AVRPPHB SUSCEPTIBLE1 (PBS1) serves as a "decoy" in activating RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5) upon cleavage by Pseudomonas phaseolicola B (AvrPphB), a Pseudomonas syringae effector. The SEMPH motif in PBS1 was thought to allow it to be distinguished by RPS5 from the closely related Arabidopsis kinases. However, the underlying mechanism is not fully understood. Here, we isolated and characterized a wheat PBS1 homolog, TaPBS1. Although this plasma membrane-localized kinase could be cleaved by AvrPphB and could associate with RPS5, it failed to trigger RPS5-mediated hypersensitive response (HR) in a transient assay. TaPBS1 harbors a STRPH motif. The association of RPS5 with TaPBS1 was weaker than with PBS1. Change of the STRPH motif to the SEMPH motif allowed TaPBS1 to trigger HR. However, the SEMPH motif is not required for association of PBS1 with RPS5. The difference between "SEMPH" and "STRPH" points to the importance of "EM" in PBS1. Furthermore we found that a negatively charged amino acid at the position of "E" in the SEMPH motif was required for recognition of PBS1 by RPS5. Additionally, both PBS1 and TaPBS1 undergo the flagellin-induced phosphorylation. Therefore, our work will help understand the mechanism of PBS1 functioning in plant innate immunity.
Disulfide bonds are essential for the folding of the eukaryotic secretory and membrane proteins in the endoplasmic reticulum (ER), and ER oxidoreductin-1 (Ero1) and its homologs are the major disulfide donors that supply oxidizing equivalents in the ER. Although Ero1 homologs in yeast (
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H+-PPase or VP1), the vacuolar proton ATPase (V-H+-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP to these organelles in several eukaryotes, such as yeast, trypanosomatids, Apicomplexan and algae. Studies in trypanosomatids have revealed the role of polyP and acidocalcisomes in osmoregulation and calcium signalling.
We tested the antituberculosis drug SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, for its in vitro activity against the trypanosomatid parasite Trypanosoma cruzi, the causative agent of Chagas disease. SQ109 was found to be a potent inhibitor of the trypomastigote form of the parasite, with a 50% inhibitory concentration (IC50) for cell killing of 50 ± 8 nM, but it had little effect (50% effective concentration [EC50], ∼80 μM) in a red blood cell hemolysis assay. It also inhibited extracellular epimastigotes (IC50, 4.6 ± 1 μM) and the clinically relevant intracellular amastigotes (IC50, ∼0.5 to 1 μM), with a selectivity index of ∼10 to 20. SQ109 caused major ultrastructural changes in all three life cycle forms, as observed by light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It rapidly collapsed the inner mitochondrial membrane potential (Δψm) in succinate-energized mitochondria, acting in the same manner as the uncoupler FCCP [carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone], and it caused the alkalinization of internal acidic compartments, effects that are likely to make major contributions to its mechanism of action. The compound also had activity against squalene synthase, binding to its active site; it inhibited sterol side-chain reduction and, in the amastigote assay, acted synergistically with the antifungal drug posaconazole, with a fractional inhibitory concentration index (FICI) of 0.48, but these effects are unlikely to account for the rapid effects seen on cell morphology and cell killing. SQ109 thus most likely acts, at least in part, by collapsing Δψ/ΔpH, one of the major mechanisms demonstrated previously for its action against Mycobacterium tuberculosis. Overall, the results suggest that SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, may also have potential as a drug lead against Chagas disease.