Abstract This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.
Abstract. Measurements from actinic flux spectroradiometers on board the NASA DC-8 during the Atmospheric Tomography (ATom) mission provide an extensive set of statistics on how clouds alter photolysis rates (J-values) throughout the remote Pacific and Atlantic Ocean basins. ATom made profiling circumnavigations of the troposphere over four seasons during 2016–2018. J-values are a primary chemical control over tropospheric ozone and methane abundances and their greenhouse effects. Clouds have been recognized for more than three decades as being an important factor in tropospheric chemistry. The ATom climatology of J-values is a unique test of how the chemistry models treat clouds. This work focuses on measurements over the Pacific during the first deployment (ATom-1) in August 2016. Nine global chemistry–climate or –transport models provide J-values for the domains measured in ATom-1. We compare mean profiles over a range of cloudy and clear conditions; but, more importantly, we build a statistical picture of the impact of clouds on J-values through the distribution of the ratio of J-cloudy to J-clear. In detail, the models show largely disparate patterns. When compared with measurements, there is some limited, broad agreement. Models here have resolutions of 50–200 km and thus reduce the occurrence of clear sky when averaging over grid cells. In situ measurements also average the scattered sunlight, but only out to scales of 10 s of km. A primary uncertainty remains in the role of clouds in chemistry, in particular, how models average over cloud fields, and how such averages can simulate measurements.
Abstract. An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone), and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths vertically. Six global models have prepared such climatologies (at model resolution) for August with emphasis on the vast central Pacific and Atlantic Ocean basins. We show clear differences in model generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multi-dimensional probability densities of key species weighted by frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case. Testing 100-km scale models with 2-km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry-climate models to ingest an externally-sourced climatology and then compute air parcel reactivity is demonstrated. Such an observed climatology is anticipated from the NASA Atmospheric Tomography (ATom) aircraft mission (2015–2020), measuring the key species, executing profiles over the Pacific and Atlantic Ocean basins. This work is a core part of the design of ATom.
One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.
Abstract. We derive the tropical modal age of air from an analysis of the water vapor tape recorder. We combine the observationally derived modal age with mean age of air from CO2 and SF6 to create diagnostics for the independent evaluation of the vertical transport rate and horizontal recirculation into the tropics between 16–32 km. These diagnostics are applied to two Global Modeling Initiative (GMI) chemistry and transport model (CTM) age tracer simulations to give new insights into the tropical transport characteristics of the meteorological fields from the GEOS4-GCM and the GEOS4-DAS. Both simulations are found to have modal ages that are in reasonable agreement with the empirically derived age (i.e., transit times) over the entire altitude range. Both simulations show too little horizontal recirculation into the tropics above 22 km, with the GEOS4-DAS fields having greater recirculation. Using CH4 as a proxy for mean age, comparisons between HALOE and model CH4 in the Antarctic demonstrate how the strength of tropical recirculation affects polar composition in both CTM experiments. Better tropical recirculation tends to improve the CH4 simulation in the Antarctic. However, mean age in the Antarctic lower stratosphere can be compromised by poor representation of tropical ascent, tropical recirculation, or vortex barrier strength. The connection between polar and tropical composition shown in this study demonstrates the importance of diagnosing each of these processes separately in order to verify the adequate representation of the processes contributing to polar composition in models.
Abstract The oxidizing capacity of the troposphere is controlled primarily by the abundance of hydroxyl radical (OH). The global mean concentration of tropospheric OH, [OH] TROP (the burden of OH in the global troposphere appropriate for calculating the lifetime of methane) inferred from measurements of methyl chloroform has remained relatively constant during the past several decades despite rising levels of methane that should have led to a decline. Here we examine other factors that may have affected [OH] TROP such as the changing values of stratospheric ozone, rising tropospheric H 2 O, varying burden of NO x (=NO+NO 2 ), rising temperatures, and widening of the climatological tropics due to expansion of the Hadley cell. Our analysis suggests the positive trends in [OH] TROP due to H 2 O, NO x , and overhead O 3 , and tropical expansion are large enough (Δ [OH] TROP = +0.95 ± 0.18%/decade) to counter almost all of the expected decrease in [OH] TROP due to rising methane (Δ [OH] TROP = −1.01 ± 0.05%/decade) over the period 1980 to 2015, while variations in temperature contribute almost no trend (Δ [OH] TROP = −0.02 ± 0.02%/decade) in [OH] TROP . The approximated impact of Hadley cell expansion on [OH] TROP is also a small but not insignificant factor partially responsible for the steadiness of tropospheric oxidizing capacity over the past several decades, which free‐running models likely do not capture.
Abstract. The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O3 and CH4 (O3, CH4, CO, H2O, HCHO, H2O2, CH3OOH, C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3, HNO4, peroxyacetyl nitrate, and other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O3 and CH4 photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom 10 s data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find generally good agreement with the reactivity rates for O3 and CH4. Models distinctly underestimate O3 production below 2 km relative to the mid-troposphere, and this can be traced to lower NOx levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation. This paper presents a corrected version of the paper published under the same authors and title (sans “corrected”) as https://doi.org/10.5194/acp-21-13729-2021.