Macedonia is a small country, and the current state has been independent for only 22 years. Medical research, which requires an extensive infrastructure, has been limited. We describe our experience in developing Macedonian research through a mutually beneficial collaboration between institutions in Macedonia and the United States.
Abstract Suicide rates have increased steadily world-wide over the past two decades, constituting a serious public health crisis that creates a significant burden to affected families and the society as a whole. Suicidal behavior involves a multi-factorial etiology, including psychological, social and biological factors. Since the molecular neural mechanisms of suicide remain largely uncharacterized, we examined transcriptional- and methylation profiles of postmortem brain tissue from subjects who died from suicide as well as their neurotypical healthy controls. We analyzed temporal pole tissue from 61 subjects, free from antidepressant and antipsychotic medication, using whole genome RNA-sequencing and DNA-methylation profiling using an array that targets over 850,000 CpG sites. Expression of , a key regulator of inflammation and neuroprotection, was significantly downregulated in the suicide-decedent group. Moreover, we identified a total of 40 differentially methylated regions in the suicide decedent group, mapping to seven genes with inflammatory function. There was a significant association between DNA methylation and expression in the control group that was absent in the suicide decedent group, confirming its dysregulation. expression was significantly associated with the expression of multiple inflammatory factors in the brain tissue. Overall, gene sets and pathways closely linked to inflammation were significantly upregulated, while specific pathways linked to neuronal development were suppressed in the suicide decedent group. Excitotoxicity as well as suppressed oligodendrocyte function were also implicated in the suicide decedents. In summary, we have identified central nervous system inflammatory mechanisms that may be active during suicidal behavior, along with oligodendrocyte dysfunction and altered glutamate neurotransmission. In these processes, NPAS4 might be a master regulator, warranting further studies to validate its role as a potential biomarker or therapeutic target in suicidality.
Abstract Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity 1,2 , and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders 3,4 , underscoring the need to define the brain’s molecular energetic landscape 5–10 . To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities 11 , thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.
Mechanisms underlying brain arterial remodeling are uncertain. We tested the hypothesis that arterial size and location are important determinants of arterial characteristics. We collected large and penetrating brain arteries from cadavers with and without HIV. Morphometric characterization was obtained from digital images using color-based thresholding. The association of arterial size and location with lumen diameter, media and adventitia area, media proportion, a wall thickness, wall-to-lumen ratio and stenosis was obtained with multilevel mixed models and a P value ≤ 0.05 was considered significant. We included 336 brains, in which 2279 large arteries and 1488 penetrating arteries were identified. We found that arterial size was significantly associated with all arterial characteristics studied of large and penetrating arteries with exception of arterial stenosis in large arteries. After adjusting for size, an independent association was found between lumen diameters, media and adventitia thickness with artery locations. Arterial stenosis was also associated with artery location in both large and penetrating arteries. In summary, significant effects of size and/or location were found in arterial characteristics typically used to define arterial remodeling. Brain arterial remodeling characteristics differ across arterial sizes and location, and these differences should be controlled for in future studies of brain arterial remodeling.
Diabetes mellitus leads to several recognizable clinicopathologic neuropathic syndromes. Diagnosis and evaluation requires a thorough history and neurologic examination, nerve conductions and needle electromyography (EMG), blood studies, consideration of cerebrospinal fluid analysis, and nerve and muscle biopsy in the most severely affected patients. Microangiopathy is the commonest cause of diabetic neuropathy, associated with potentially reversible metabolic, immunologic, or ischemic injury. Tight glycemic control and symptomatic therapy is beneficial in some patients but does not prevent progression of neuropathy especially in patients with severe motor and gait disability. Intravenous immune globulin is a novel therapy in diabetic patients. It may be considered in selected patients well characterized by clinical, electrophysiologic, histopathologic studies, and one of the following progressive syndromes: mononeuropathy multiplex, primary demyelinating motor or sensorimotor neuropathy, and peripheral nerve perivasculitis or microvasculitis associated with vascular membrane attack complex protein deposits.
Amyotrophic lateral sclerosis is a fatal paralytic disorder of unknown cause. Recent evidence implicated the role of free radicals in the death of motor neurons in this disease. To investigate this hypothesis further, we measured the activity of the main free radical scavenging enzymes copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, and glutathione peroxidase in postmortem brain samples from 9 patients with sporadic amyotrophic lateral sclerosis and from 9 control subjects. We examined samples from the precentral gyrus of the cerebral cortex, a region affected in amyotrophic lateral sclerosis, and from the cerebellar cortex, a region not affected. The two groups did not differ in age or postmortem delay. In the precentral gyrus from amyotrophic lateral sclerosis samples, glutathione peroxidase activity as measured by spectrophotometric assay (13.8 +/- 2.6 nmol/min/mg protein [mean +/- standard error of mean]) was reduced significantly compared to the activity in the precentral gyrus from control samples (22.7 +/- 0.5 nmol/min/mg protein). In contrast, glutathione peroxidase activity was not significantly altered in the cerebellar cortex from amyotrophic lateral sclerosis patients compared to controls. Copper/zinc superoxide dismutase, manganese superoxide dismutase (corrected or not corrected for citrate synthase), and catalase were not significantly altered in the precentral gyrus or cerebellar cortex in the patient samples. This study indicated that glutathione peroxidase activity is reduced in a brain region affected in amyotrophic lateral sclerosis, thus suggesting that free radicals may be implicated in the pathogenesis of the disease.