The cellobiose phosphorylase (EC 2.4.1.20) of Cellvibrio gilvus, which is an endocellular enzyme, has been purified 196-fold with a recovery of 11% and a specific activity of 27.4 mumol of glucose 1-phosphate formed/min per mg of protein. The purification procedure includes fractionation with protamine sulphate, and hydroxyapatite and DEAE-Sephadex A-50 chromatography. The enzyme appears homogeneous on polyacrylamide-gel electrophoresis, and a molecular weight of 280 000 was determined by molecular-sieve chromatography. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed a single band and mol.wt. 72 000, indicating that cellobiose phosphorylase consists of four subunits. The enzyme had a specificity for cellobiose, requiring Pi and Mg2+ for phosphorylation, but not for cellodextrin, gentibiose, laminaribiose, lactose, maltose, kojibiose and sucrose. The enzyme showed low thermostability, an optimum pH of 7.6 and a high stability in the presence of 2-mercaptoethanol or dithiothreitol. The Km values for cellobiose and Pi were 1.25 mM and 0.77 mM respectively. Nojirimycin acted as a powerful pure competitive inhibitor (with respect to cellobiose) of the enzyme (Ki = 45 microM). Addition of thiol-blocking agents to the enzyme caused 56% inhibition at 500 microM-N-ethylmaleimide and 100% at 20 microM-p-chloromercuribenzoate.
Human parathyroid hormone is a peptide hormone consisting of 84 amino acid residues. Production of small proteins by direct expression in Escherichia coli is often unsuccessful owing to susceptibility of the mRNA and/or the product to endogenous enzymes. In this study, direct expression of the hormone at an excellent level (over 100 mg/L) has been achieved by using a suitably designed synthetic gene under the control of the T7 promoter. The protein produced in bacteria was extracted and easily purified in a good yield of 27 mg/L. The purified product was physico-chemically identified as intact human parathyroid hormone from the results of amino acid analysis, N-terminal sequencing, and peptide mapping using fast atom bombardment mass spectrometry. In biological assays the purified product stimulated adenylate cyclase in vitro, promoted bone growth and increased the serum osteocalcin in rats to the same extent as the authentic hormone.