Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis, an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to severe acute respiratory syndrome coronavirus 2, influenza, and human immunodeficiency virus, highlight antigen-specific receptors, and reveal distinct characteristics of systemic lupus erythematosus and type-1 diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of immune responses.
Abstract Background Data on the characteristics of COVID-19 patients disaggregated by race/ethnicity remain limited. We evaluated the sociodemographic and clinical characteristics of patients across racial/ethnic groups and assessed their associations with COVID-19 outcomes. Methods This retrospective cohort study examined 629,953 patients tested for SARS-CoV-2 in a large health system spanning California, Oregon, and Washington between March 1 and December 31, 2020. Sociodemographic and clinical characteristics were obtained from electronic health records. Odds of SARS-CoV-2 infection, COVID-19 hospitalization, and in-hospital death were assessed with multivariate logistic regression. Results 570,298 patients with known race/ethnicity were tested for SARS-CoV-2, of whom 27.8% were non-White minorities. 54,645 individuals tested positive, with minorities representing 50.1%. Hispanics represented 34.3% of infections but only 13.4% of tests. While generally younger than White patients, Hispanics had higher rates of diabetes but fewer other comorbidities. 8,536 patients were hospitalized and 1,246 died, of whom 56.1% and 54.4% were non-White, respectively. Racial/ethnic distributions of outcomes across the health system tracked with state-level statistics. Increased odds of testing positive and hospitalization were associated with all minority races/ethnicities. Hispanic patients also exhibited increased morbidity, and Hispanic race/ethnicity was associated with in-hospital mortality (OR: 1.39 [95% CI: 1.14-1.70]). Conclusion Major healthcare disparities were evident, especially among Hispanics who tested positive at a higher rate, required excess hospitalization and mechanical ventilation, and had higher odds of in-hospital mortality despite younger age. Targeted, culturally-responsive interventions and equitable vaccine development and distribution are needed to address the increased risk of poorer COVID-19 outcomes among minority populations. Key points Racial/ethnic disparities are evident in the disaggregated characteristics of COVID-19 patients. Minority patients experience increased odds of SARS-CoV-2 infection and COVID-19 hospitalization. Hospitalized Hispanic patients presented with more severe illness, experienced increased morbidity, and faced increased mortality.
Abstract Background Interventions to reduce mortality in critically ill patients with COVID-19 are a crucial unmet medical need. Baricitinib (BARI) is an oral, selective Janus kinase (JAK)1/JAK2 inhibitor with efficacy in hospitalized adults with COVID-19. Treatment with BARI 4-mg was evaluated in critically ill adult patients with COVID-19 with baseline need for invasive mechanical ventilation (IMV) or extracorporeal membrane oxygenation (ECMO). Methods COV-BARRIER (NCT04421027) was a randomized double-blind, placebo-controlled trial in patients with confirmed SARS-CoV-2 infection and elevation of ≥ 1 serum inflammatory marker. In this newly completed substudy, enrolled participants (not previously reported) from 4 countries on IMV or ECMO at study entry were randomly assigned 1:1 to once-daily BARI 4-mg or placebo (PBO) for up to 14 days plus standard of care (SOC), which included baseline systemic corticosteroid use in 86% of patients. The prespecified exploratory endpoints included all-cause mortality and number of ventilator-free days (VFDs) through Day 28. Results Characteristics for 101 participants are shown in Table 1. Treatment with BARI significantly reduced all-cause mortality by Day 28 compared to PBO [39.2% vs 58.0%, respectively; hazard ratio (HR) = 0.54 (95%CI 0.31, 0.96), p=0.030, relative risk (RR) = 0.68 (95%CI 0.45, 1.02); Figure 1A]. One additional death was prevented for every six BARI-treated patients. Significant reduction in mortality was also observed by Day 60 [45.1% vs 62.0%; HR = 0.56 (95%CI 0.33, 0.97), p=0.027, RR = 0.73 (95%CI 0.50, 1.06); Figure 1B]. Patients treated with BARI showed a numerical reduction in the duration of IMV and duration of hospitalization vs PBO and more BARI treated patients recovered (Table 2). No new safety findings were observed (Table 2). Conclusion Treatment with BARI+SOC (corticosteroids) resulted in an absolute risk reduction in mortality of 19% at Day 28 and 17% at Day 60 in patients with COVID-19 who were on IMV or ECMO at enrollment. These results are consistent with the reduction in mortality observed in the less severely ill hospitalized patients in the primary COV-BARRIER study population. Disclosures E. Wesley Ely, MD, CDC (Grant/Research Support)Eli Lilly (Other Financial or Material Support, Unpaid consultant)NIH (Grant/Research Support)VA (Grant/Research Support) Athimalaipet V. Ramanan, FRCP, AbbVie (Consultant, Speaker’s Bureau)Eli Lilly and Company (Consultant, Grant/Research Support, Speaker’s Bureau)Novartis (Consultant, Speaker’s Bureau)Pfizer (Consultant, Speaker’s Bureau)Roche (Consultant, Speaker’s Bureau)Sobi (Consultant, Speaker’s Bureau)UCB (Consultant, Speaker’s Bureau) Cynthia E. Kartman, RN BSN, Eli Lilly and Company (Employee, Shareholder) Stephanie de Bono, MD PhD, Eli Lilly and Company (Employee, Shareholder) Ran Liao, PhD, Eli Lilly and Company (Employee, Shareholder) Maria Lucia B Piruzeli, MD, Eli Lilly and Company (Employee, Shareholder) Sujatro Chakladar, PhD, Eli Lilly and Company (Employee, Shareholder) Vincent Marconi, MD, Bayer (Consultant, Scientific Research Study Investigator)Eli Lilly (Consultant, Scientific Research Study Investigator)Gilead Sciences (Consultant, Scientific Research Study Investigator)ViiV (Consultant, Scientific Research Study Investigator)
Few antiviral therapies have been studied in patients with coronavirus disease 2019 (COVID-19) and kidney impairment. Herein, the efficacy, safety, and pharmacokinetics of remdesivir, its metabolites, and sulfobutylether-β-cyclodextrin excipient were evaluated in hospitalized patients with COVID-19 and severe kidney impairment. In REDPINE, a phase 3, randomized, double-blind, placebo-controlled study, participants aged ≥12 years hospitalized for COVID-19 pneumonia with acute kidney injury, chronic kidney disease, or kidney failure were randomized 2:1 to receive intravenous remdesivir (200 mg on day 1; 100 mg daily up to day 5) or placebo (enrollment from March 2021 to March 2022). The primary efficacy end point was the composite of the all-cause mortality rate or invasive mechanical ventilation rate through day 29. Safety was evaluated through day 60. Although enrollment concluded early, 243 participants were enrolled and treated (remdesivir, n = 163; placebo, n = 80). At baseline, 90 participants (37.0%) had acute kidney injury (remdesivir, n = 60; placebo, n = 30), 64 (26.3%) had chronic kidney disease (remdesivir, n = 44; placebo, n = 20), and 89 (36.6%) had kidney failure (remdesivir, n = 59; placebo, n = 30); and 31 (12.8%) were vaccinated against COVID-19. Composite all-cause mortality or invasive mechanical ventilation rates through day 29 were 29.4% and 32.5% in the remdesivir and placebo group, respectively (P = .61). Treatment-emergent adverse events were reported in 80.4% for remdesivir versus 77.5% for placebo, and serious adverse events in 50.3% versus 50.0%, respectively. Pharmacokinetic plasma exposure to remdesivir was not affected by kidney function. Although the study was underpowered, no significant difference in efficacy was observed between treatment groups. REDPINE demonstrated that remdesivir is safe in patients with COVID-19 and severe kidney impairment. EudraCT 2020-005416-22; Clinical Trials.gov NCT04745351.
Abstract BackgroundThe early months of the COVID-19 pandemic were fraught with much uncertainty and some resource constraint. We assessed the change in survival to hospital discharge over time for intensive care unit patients with COVID-19 during the first three months of the pandemic and the presence of any surge effects on patient outcomes.MethodsRetrospective cohort study using electronic medical record data for all patients with laboratory-confirmed COVID-19 admitted to intensive care units from February 25, 2020 to May 15, 2020 at one of 26 hospitals within an integrated delivery system in the Western United States. Patient demographics, comorbidities and severity of illness were measured along with medical therapies and hospital outcomes over time. Multivariable logistic regression models were constructed to assess temporal changes in survival to hospital discharge during the study period.ResultsOf 620 patients with COVID-19 admitted to the ICU (mean age 63.5 years (SD 15.7) and 69% male), 403 (65%) survived to hospital discharge and 217 (35%) died in the hospital. Survival to hospital discharge increased over time, from 60.0% in the first two weeks of the study period to 67.6% in the last two weeks. In a multivariable logistic regression analysis, the risk-adjusted odds of survival to hospital discharge increased over time (bi-weekly change, adjusted odds ratio [aOR] 1.22, 95%CI 1.04-1.40, P = 0.02). Additionally, an a priori -defined explanatory model showed that after adjusting for both hospital occupancy and percent hospital capacity by COVID-19 positive individuals and persons under investigation (PUI), the temporal trend in risk-adjusted patient survival to hospital discharge remained the same (bi-weekly change, aOR 1.18, 95% CI 1.00 to 1.38, P = 0.04). The presence of greater rates of COVID-19 positive/PUI as a percentage of hospital capacity was, however, significantly and inversely associated with survival to hospital discharge (aOR 0.95, 95% CI 0.92 to 0.98, P < 0.01). ConclusionsDuring the early COVID-19 pandemic, risk-adjusted survival to hospital discharge increased over time for critical care patients. An association was also seen between a greater COVID-19 positive/PUI percentage of hospital capacity and a lower survival rate to hospital discharge.
Virion-mediated outbreaks are imminent and despite rapid responses, continue to cause adverse symptoms and death. Therefore, tunable, sensitive, high-throughput assays are needed to help diagnose future virion-mediated outbreaks. Herein, it is developed a tunable in situ assay to selectively enrich virions and extracellular vesicles (EVs) and simultaneously detect antigens and nucleic acids at a single-particle resolution. The Biochip Antigen and RNA Assay (BARA) enhanced sensitivities compared to quantitative reverse-transcription polymerase chain reaction (qRT-PCR), enabling the detection of virions in asymptomatic patients, genetic mutations in single virions, and enabling the continued long-term expression of viral RNA in the EV-enriched subpopulation in the plasma of patients with post-acute sequelae of the coronavirus disease of 2019 (COVID-19). BARA revealed highly accurate diagnoses of COVID-19 by simultaneously detecting the spike glycoprotein and nucleocapsid-encoding RNA in saliva and nasopharyngeal swab samples. Altogether, the single-particle detection of antigens and viral RNA provides a tunable framework for the diagnosis, monitoring, and mutation screening of current and future outbreaks.
CD8 + cytotoxic T cell responses against viral infection represent a major element of the adaptive immune response. We describe the development of a peptide antigen - major histompatibility complex (pMHC) library representing the full SARS-CoV-2 viral proteome, and comprised of 634 pMHC multimers representing the A*02.01, A*24.02, and B*07.02 HLA alleles, as well as specific antigens associated with the cytomegalovirus (CMV). These libraries were used to capture non-expanded CD8 + T cells from blood samples collected from 64 infected individuals, and then analyzed using single cell RNA-seq. The discovery and characterization of antigen-specific CD8 + T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapted single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We used this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then constructed SCT libraries designed to capture SARS-CoV-2 specific CD8 + T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes was validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.
We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.