Abstract To study the hybrid effects of polypropylene fiber and basalt fiber on the fracture toughness of concrete, 13 groups of notched concrete beam specimens with different fiber contents and mass ratios were prepared for the three-point bending test. Based on acoustic emission monitoring data, the initiation cracking load and instability load of each group of specimens were obtained, and the fracture toughness parameters were calculated according to the double-K fracture criterion. The test results show that the basalt fiber-reinforced concrete has a greater increase in initial fracture toughness, and the toughness of coarse polypropylene fiber-reinforced concrete is more unstable. Moreover, after the coarse polypropylene fiber content reaches 6 kg/m 3 and the basalt fiber content reaches 3 kg/m 3 , increasing the content will not significantly improve the fracture toughness of the concrete. The polypropylene–basalt fiber will produce positive and negative effects when mixed, and the mass ratio of 2:1 was optimal. Finally, the fitting analysis revealed that the fracture process of polypropylene–basalt fiber-reinforced concrete (PBFRC) can be objectively described by the bilinear softening constitutive curve improved by Xu and Reinhardt.
Based on the supposition for displacement mode of soil in passive region,using the Duncan-Chang model,a passive soil pressure computing formula considering nonlinearity of retaining wall displacement was proposed.Calculated results got by back analysis of model test were compared with measured results.Results show that the calculated results agree well with measured results.The formula in the paper which has advantages of simplification,good intelli-gibility,a few parameters and specific physical significance can reflect the nonlinear influence of displacement on passive soil pressure.
Aiming at the safety of tunnel operation, based on the investigation and statistical analysis of a large number of operating tunnel diseases, comprehensively considering the interaction between the surrounding rock and the structure, this paper establishes the failure criteria for surrounding rocks and lining materials by using numerical limit analysis and theoretical analysis methods, analyzes the overall stability and instability failure mechanism on the shallow tunnel under unsymmetrical pressure during the operation period by using the strength reduction method in light of the operation safety of the tunnel, proposes the reasonable monitoring strategy, and also constructs monitoring index system. The analysis and research results show that the tunnel structure is affected by bias pressure due to the asymmetry of the terrain. The probability of disease in the bias pressure tunnel under asymmetric terrain conditions is significantly higher than that of the general terrain. The shallow tunnel under unsymmetrical pressure has experienced three development stages from shear failure to overall instability, including rock mass fracture and sliding, structural damage, and overall instability, which can be divided into eight processes. During operation, the key monitoring indicators of surface deformation are the subsidence and deformation of the slope top and the horizontal displacement of the slope itself, followed by the monitoring of the uplift and deformation at the bottom of the slope. Meanwhile, close attention should be paid to the structural stress states in the sliding direction and perpendicular to the sliding direction of the lining structure, which demonstrates that the principal compressive stress in the sliding direction is more sensitive than the principal tensile stress in perpendicular to the sliding direction and should be listed as the key monitoring and early warning indicators of the structural stress.