vegetative state/unresponsive wakefulness syndrome (VS/UWS), in a minimally conscious state (MCS) and in patients who emerged from MCS (EMCS) by performing comparison between spasticity and (i) etiology, (ii) antispastic medication and (iii) diagnosis. We also performed a correlation between spasticity and the Coma Recovery Scale-Revised (CRS-R) [1], and its motor subscale. Aurore Thibaut1, Marie Thonnard1, Olivia Gosseries1, Steven Laureys1 1 Coma Science Group, Neurology Dept & Cyclotron Research Centre, University Hospital & University of Liege, Liege, Belgium
Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.
Abstract Background Impaired consciousness has been associated with impaired cortical signal propagation following transcranial magnetic stimulation (TMS). Herein we hypothesized that the reduced current propagation under propofol-induced unresponsiveness is associated with changes in both feedforward and feedback connectivity across the cortical hierarchy. Methods Eight subjects underwent left occipital TMS coupled with high-density electroencephalograph (EEG) recordings during wakefulness and propofol-induced unconsciousness. Spectral analysis was applied to responses recorded from sensors overlying six hierarchical cortical sources involved in visual processing. Dynamic causal modelling (DCM) of evoked and induced source-space responses was used to investigate propofol’s effects on connectivity between regions. Results Propofol produced a wideband reduction in evoked power following TMS in five out of six electrodes. Bayesian Model Selection supported a DCM with hierarchical feedforward and feedback connections to best fit the data. DCM of induced responses revealed that the primary effect of propofol was impaired feedforward responses in cross frequency theta/alpha-gamma coupling and within frequency theta coupling (F contrast, Family Wise Error corrected p<0.05). An exploratory analysis (thresholded at uncorrected p<0.001) also suggested that propofol impaired feedforward and feedback beta band coupling. Posthoc analyses showed impairments in all feedforward connections and one feedback connection from parietal to occipital cortex. DCM of the evoked response potential showed impaired feedforward connectivity between left sided occipital and parietal cortex (T contrast p=0.004, Bonferroni corrected). Conclusions Our data suggest that propofol-induced loss of consciousness is associated with reduced evoked power and impaired hierarchical feedforward connectivity following occipital TMS.
Abstract Disorders of consciousness are neurological conditions characterized by impaired arousal and awareness of self and environment. Behavioural responses are absent or are present but fluctuate. Disorders of consciousness are commonly encountered as a consequence of both acute and chronic brain injuries, yet reliable epidemiological estimates would require inclusive, operational definitions of the concept, as well as wider knowledge dissemination among involved professionals. Whereas several manifestations have been described, including coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state, a comprehensive neurobiological definition for disorders of consciousness is still lacking. The scientific literature is primarily observational, and studies-specific aetiologies lead to disorders of consciousness. Despite advances in these disease-related forms, there remains uncertainty about whether disorders of consciousness are a disease-agnostic unitary entity with a common mechanism, prognosis or treatment response paradigm. Our knowledge of disorders of consciousness has also been hampered by heterogeneity of study designs, variables, and outcomes, leading to results that are not comparable for evidence synthesis. The different backgrounds of professionals caring for patients with disorders of consciousness and the different goals at different stages of care could partly explain this variability. The Prospective Studies working group of the Neurocritical Care Society Curing Coma Campaign was established to create a platform for observational studies and future clinical trials on disorders of consciousness and coma across the continuum of care. In this narrative review, the author panel presents limitations of prior observational clinical research and outlines practical considerations for future investigations. A narrative review format was selected to ensure that the full breadth of study design considerations could be addressed and to facilitate a future consensus-based statement (e.g. via a modified Delphi) and series of recommendations. The panel convened weekly online meetings from October 2021 to December 2022. Research considerations addressed the nosographic status of disorders of consciousness, case ascertainment and verification, selection of dependent variables, choice of covariates and measurement and analysis of outcomes and covariates, aiming to promote more homogeneous designs and practices in future observational studies. The goal of this review is to inform a broad community of professionals with different backgrounds and clinical interests to address the methodological challenges imposed by the transition of care from acute to chronic stages and to streamline data gathering for patients with disorders of consciousness. A coordinated effort will be a key to allow reliable observational data synthesis and epidemiological estimates and ultimately inform condition-modifying clinical trials.