Granitic rocks in the southeastern Gyeongsang Basin can be classified into three groups. The group I contains various mafic microgranular enclave (MME) and/or mafic clot which implies magma mixing or mingling. The group II show the feature of shallow depth emplacement at low pressure, and the group III is characterized by A-type granite implying extensional tectonic environment. Mineralogical characteristics of the granitic rocks have showed systematic variations in perthite exsolution temperatures and biotite compositions according to their rock facies, although they do not show any distinctively different trend in geography and textures or rock facies. Amphiboles from Group I are calcic-amphibole and they were formed at 0.4 ~ 2.8 kb in pressure based on the amphibole geobarometry. Amphiboles from group ill are riebeckite, whileas amphiboles were not observed in Group II. The chemical composition of biotite defined in clusters showing a continuous spectrum between group I to ferric-annite of group ill. The composition of plagioclase generally plotted in albite, oligoclase, and andesine area without any distinctive differences among their geography or rock facies. The exsolution temperatures by perthite geothermometry are calculated as in Group I, and 500~ in equigranular granite of group II and alkali-feldspar granite of group III.
Precambrian metamorphic rocks of Yeongyang-Uljin area, which is located in the eastern part of Sobaegsan Massif, Korea, are composed of Pyeonghae, Giseong, Wonnam Formations and Hada leuco granite gneisses. These show a zonal distribution of WNW-ESE trend, and are intruded by Mesozoic igneous rocks and are unconformably overlain by Mesozoic sedimentary rocks. This study clarifies the deformation history of Precambrian metamorphic rocks after the formation of gneissosity or schistosity on the basis of the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area experienced at least four phases of deformation i.e. ductile shear deformation, one deformation before that, at least two deformations after that. (1) The first phase of deformation formed regional foliations and WNW-trending isoclinal folds with subhorizontal axes and steep axial planes dipping to the north. (2) The second phase of deformation occurred by dextral ductile shear deformation of top-to-the east movement, forming stretching lineations of E-W trend, S-C mylonitic structure foliations, and Z-shaped asymmetric folds. (3) The third phase deformation formed I-W trending open- or kink-type recumbent folds with subhorizontal axes and gently dipping axial planes. (4) The fourth phase deformation took place under compression of NNW-SSE direction, forming ENE-WSW trending symmetric open upright folds and asymmetric conjugate kink folds with subhorizontal axes, and conjugate faults thrusting to the both NNW and SSE with drag folds related to it. These four phases of deformation are closely connected with the orientation of regional foliation in the Yeongyang-Uljin area. 1st deformation produced regional foliation striking WNW and steeply dipping to the north, 2nd deformation locally change the strike of regional foliation into N-S direction, and 3rd and 4th deformations locally change dip-angle and dip-direction of regional foliation.