Thymic nurse cells (TNC), multicellular complexes consisting of lymphoid cells enclosed within cortical epithelial cells, were isolated from mouse thymus by a modified procedure allowing immunofluorescent labeling and flow cytometric analysis of their lymphoid contents (TNC-L). Collagenase was the only protease used for tissue digestion, to ensure that surface antigen markers remained intact. Zonal unit-gravity elutriation was used to enrich the TNC on the basis of their high sedimentation rate, followed by immunomagnetic bead depletion to remove residual mononuclear cell contaminants and a density separation to remove debris. The TNC-L were then released from inside TNC by a short period of culture. The measured contamination of TNC-L with exogenous thymocytes was around 0.5%. Three-color immunofluorescent labeling revealed that TNC-L included, as well as a majority of immature CD4+8+3low thymocytes, about 12% of apparently mature CD4+8-3high and CD4-8+3high thymocytes. TNC are located in the cortex, where mature cells are rare; the occurrence of mature phenotype cells within these structures suggests that they represent a microenvironment for the selection and generation of mature T cells.
A new procedure for rapid isolation of dendritic cells (DC) was devised, involving collagenase digestion of tissues, dissociation of lymphoid-DC complexes, selection of light-density cells, then depletion of lymphocytes and other non-DC by treatment with a mixture of lineage-specific monoclonal antibodies (mAbs) and removal with anti-immunoglobulin-coupled magnetic beads. This enriched population (approximately 80% DC) was further purified when required by fluorescence-activated cell sorting for cells expressing high levels of class II major histocompatibility complex (MHC). The isolated DC were characterized by immunofluorescent staining using a panel of 30 mAbs. Thymic DC were surface positive for a number of markers characteristic of T cells, but they were distinct from T-lineage cells in expressing high levels of class II MHC, in lacking expression of the T cell receptor (TCR)-CD3 complex, and having TCR beta and gamma genes in germline state. Splenic DC shared many markers with thymic DC, but were negative for most T cell markers, with the exception of CD8. A substantial proportion of DC from both thymus and spleen expressed CD8 at high levels, comparable with that on T cells. This appeared to be authentic CD8, and was produced by the DC themselves, since they contained CD8 alpha mRNA. Thymic DC presented both the CD8 alpha and beta chains on the cell surface (Ly-2+3+), although the alpha chain was in excess; the splenic DC expressed only the CD8 alpha chain (Ly-2+3-). It is suggested that the expression of CD8 could endow certain antigen-presenting DC with a veto function.
The IL-2 receptor (IL-2R) alpha chain (CD25), but not the IL-2R beta chain, is induced on dendritic cells (DC) by brief periods of culture. To test if this IL-2R alpha is important for DC function, DC were isolated from the spleens of mutant mice with the IL-2R alpha gene disrupted and compared with normal DC for ability to stimulate proliferation of allogeneic CD4 and CD8 T cells in culture. The IL-2R alpha null DC and the normal DC produced nearly identical proliferative responses from CD4 and from CD8 T cells. When the CD8 alpha+ and CD8 alpha- subsets of the IL-2R alpha null DC were separated, they also produced proliferative responses similar to that of their normal DC counterparts. Overall there was no evidence that the inducible IL-2R alpha on DC was required for DC development, for stimulation of T cells or for regulation of T cell responses.
Polyinosinic:polycytidylic acid (poly IC), a double-stranded RNA, is an effective adjuvant in vivo. IFN-λs (also termed IL-28/29) are potent immunomodulatory and antiviral cytokines. We demonstrate that poly IC injection in vivo induces large amounts of IFN-λ, which depended on hematopoietic cells and the presence of TLR3 (Toll-like receptor 3), IRF3 (IFN regulatory factor 3), IRF7, IFN-I receptor, Fms-related tyrosine kinase 3 ligand (FL), and IRF8 but not on MyD88 (myeloid differentiation factor 88), Rig-like helicases, or lymphocytes. Upon poly IC injection in vivo, the IFN-λ production by splenocytes segregated with cells phenotypically resembling CD8α+ conventional dendritic cells (DCs [cDCs]). In vitro experiments revealed that CD8α+ cDCs were the major producers of IFN-λ in response to poly IC, whereas both CD8α+ cDCs and plasmacytoid DCs produced large amounts of IFN-λ in response to HSV-1 or parapoxvirus. The nature of the stimulus and the cytokine milieu determined whether CD8α+ cDCs produced IFN-λ or IL-12p70. Human DCs expressing BDCA3 (CD141), which is considered to be the human counterpart of murine CD8α+ DCs, also produced large amounts of IFN-λ upon poly IC stimulation. Thus, IFN-λ production in response to poly IC is a novel function of mouse CD8α+ cDCs and their human equivalents.
The CD45RA(hi)CD11c(int) plasmacytoid predendritic cells (p-preDCs) of mouse lymphoid organs, when stimulated in culture with CpG or influenza virus, produce large amounts of type I interferons and transform without division into CD8(+)CD205(-) DCs. P-preDCs express CIRE, the murine equivalent of DC-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN). P-preDCs are divisible by CD4 expression into two subgroups differing in turnover rate and in response to Staphylococcus aureus. The kinetics of bromodeoxyuridine labeling and the results of transfer to normal recipient mice indicate that CD4(-) p-preDCs are the immediate precursors of CD4(+) p-preDCs. Similar experiments indicate that p-preDCs are normally long lived and are not the precursors of the short-lived steady-state conventional DCs. However, in line with the culture studies on transfer to influenza virus-stimulated mice the p-preDCs transform into CD8(+)CD205(-) DCs, distinct from conventional CD8(+)CD205(+) DCs. Hence as well as activating preexistant DCs, microbial infection induces a wave of production of a new DC subtype. The functional implications of this shift in the DC network remain to be determined.
Interferon-producing killer dendritic cells (IKDCs) have been described as possessing the lytic potential of NK cells and the antigen-presenting capacity of dendritic cells (DCs). In this study, we examine the lytic function and antigen-presenting capacity of mouse spleen IKDCs, including those found in DC preparations. IKDCs efficiently killed NK cell targets, without requiring additional activation stimuli. However, in our hands, when exposed to protein antigen or to MHC class II peptide, IKDCs induced little or no T cell proliferation relative to conventional DCs or plasmacytoid DCs, either before or after activation with CpG, or in several disease models. Certain developmental features indicated that IKDCs resembled NK cells more than DCs. IKDCs, like NK cells, did not express the transcription factor PU.1 and were absent from recombinase activating gene-2–null, common γ-chain–null (Rag2−/−Il2rg−/−) mice. When cultured with IL-15 and -18, IKDCs proliferated extensively, like NK cells. Under these conditions, a proportion of expanded IKDCs and NK cells expressed high levels of surface MHC class II. However, even such MHC class II+ IKDCs and NK cells induced poor T cell proliferative responses compared with DCs. Thus, IKDCs resemble NK cells functionally, and neither cell type could be induced to be effective antigen-presenting cells.
Using a metacyclic promastigote ear infection model of cutaneous leishmaniasis, we examined the phenotype, parasite load, and cytokine production of dendritic cells in the skin and draining lymph nodes of resistant C57BL/6J and susceptible BALB/c mice. Five dendritic cell populations were isolated from the skin and lymph nodes, and the main difference between the groups of mice was an increased number of plasmacytoid dendritic cells in the lymph nodes of the susceptible mice. Although similar cell types were present in the skin emigrants of both strains, there was a 10-fold larger number of cells in BALB/c mouse skin early in infection than in C57BL/6J mouse skin. None of the dendritic cells in the lymph nodes harbored parasites until 3 weeks after infection, with the Langerhans cells having the largest load and the plasmacytoid dendritic cells having the smallest load but the longest lasting infection. Although parasites could be detected in the lymph nodes a few hours after infection, none of the skin emigrants harbored parasites, indicating that they are not the vehicle that ferries the parasites from the skin to the lymph nodes. The presence of larger numbers of plasmacytoid cells in infected BALB/c mice, the more protracted infection of these cells, and their production of alpha interferon point to a complex and important role for the plasmacytoid cells in leishmaniasis.