Zero-Shot Learning (ZSL), which aims at automatically recognizing unseen objects, is a promising learning paradigm to understand new real-world knowledge for machines continuously. Recently, the Knowledge Graph (KG) has been proven as an effective scheme for handling the zero-shot task with large-scale and non-attribute data. Prior studies always embed relationships of seen and unseen objects into visual information from existing knowledge graphs to promote the cognitive ability of the unseen data. Actually, real-world knowledge is naturally formed by multimodal facts. Compared with ordinary structural knowledge from a graph perspective, multimodal KG can provide cognitive systems with fine-grained knowledge. For example, the text description and visual content can depict more critical details of a fact than only depending on knowledge triplets. Unfortunately, this multimodal fine-grained knowledge is largely unexploited due to the bottleneck of feature alignment between different modalities. To that end, we propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings via a designed dense attention module and self-calibration loss. It makes the semantic transfer process of our ZSL framework learns more differentiated knowledge between entities. Our model also gets rid of the performance limitation of only using rough global features. We conduct extensive experiments and evaluate our model on large-scale real-world data. The experimental results clearly demonstrate the effectiveness of the proposed model in standard zero-shot classification tasks.
Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .
The problem of mobile context recognition targets the identification of semantic meaning of context in a mobile environment. This plays an important role in understanding mobile user behaviors and thus provides the opportunity for the development of better intelligent context-aware services. A key step of context recognition is to model the personalized contextual information of mobile users. Although many studies have been devoted to mobile context modeling, limited efforts have been made on the exploitation of the sequential and dependency characteristics of mobile contextual information. Also, the latent semantics behind mobile context are often ambiguous and poorly understood. Indeed, a promising direction is to incorporate some domain knowledge of common contexts, such as “waiting for a bus” or “having dinner,” by modeling both labeled and unlabeled context data from mobile users because there are often few labeled contexts available in practice. To this end, in this article, we propose a sequence-based semisupervised approach to modeling personalized context for mobile users. Specifically, we first exploit the Bayesian Hidden Markov Model (B-HMM) for modeling context in the form of probabilistic distributions and transitions of raw context data. Also, we propose a sequential model by extending B-HMM with the prior knowledge of contextual features to model context more accurately. Then, to efficiently learn the parameters and initial values of the proposed models, we develop a novel approach for parameter estimation by integrating the Dirichlet Process Mixture (DPM) model and the Mixture Unigram (MU) model. Furthermore, by incorporating both user-labeled and unlabeled data, we propose a semisupervised learning-based algorithm to identify and model the latent semantics of context. Finally, experimental results on real-world data clearly validate both the efficiency and effectiveness of the proposed approaches for recognizing personalized context of mobile users.
Language-specific pre-trained models have proven to be more accurate than multilingual ones in a monolingual evaluation setting, Arabic is no exception. However, we found that previously released Arabic BERT models were significantly under-trained. In this technical report, we present JABER and SABER, Junior and Senior Arabic BERt respectively, our pre-trained language model prototypes dedicated for Arabic. We conduct an empirical study to systematically evaluate the performance of models across a diverse set of existing Arabic NLU tasks. Experimental results show that JABER and SABER achieve state-of-the-art performances on ALUE, a new benchmark for Arabic Language Understanding Evaluation, as well as on a well-established NER benchmark.
Recently, multimodal dialogue systems have engaged increasing attention in several domains such as retail, travel, etc. In spite of the promising performance of pioneer works, existing studies usually focus on utterance-level semantic representations with hierarchical structures, which ignore the context-aware dependencies of multimodal semantic elements, i.e., words and images. Moreover, when integrating the visual content, they only consider images of the current turn, leaving out ones of previous turns as well as their ordinal information. To address these issues, we propose a Multimodal diAlogue systems with semanTic Elements, MATE for short. Specifically, we unfold the multimodal inputs and devise a Multimodal Element-level Encoder to obtain the semantic representation at element-level. Besides, we take into consideration all images that might be relevant to the current turn and inject the sequential characteristics of images through position encoding. Finally, we make comprehensive experiments on a public multimodal dialogue dataset in the retail domain, and improve the BLUE-4 score by 9.49, and NIST score by 1.8469 compared with state-of-the-art methods.
Sentence semantic matching is a research hotspot in natural language processing, which is considerably significant in various key scenarios, such as community question answering, searching, chatbot, and recommendation. Since most of the advanced models directly model the semantic relevance among words between two sentences while neglecting the \textit{keywords} and \textit{intents} concepts of them, DC-Match is proposed to disentangle keywords from intents and utilizes them to optimize the matching performance. Although DC-Match is a simple yet effective method for semantic matching, it highly depends on the external NER techniques to identify the keywords of sentences, which limits the performance of semantic matching for minor languages since satisfactory NER tools are usually hard to obtain. In this paper, we propose to generally and flexibly resolve the text into multi concepts for multilingual semantic matching to liberate the model from the reliance on NER models. To this end, we devise a \underline{M}ulti-\underline{C}oncept \underline{P}arsed \underline{S}emantic \underline{M}atching framework based on the pre-trained language models, abbreviated as \textbf{MCP-SM}, to extract various concepts and infuse them into the classification tokens. We conduct comprehensive experiments on English datasets QQP and MRPC, and Chinese dataset Medical-SM. Besides, we experiment on Arabic datasets MQ2Q and XNLI, the outstanding performance further prove MCP-SM's applicability in low-resource languages.
Inspired by early research on exploring naturally annotated data for Chinese word segmentation (CWS), and also by recent research on integration of speech and text processing, this work for the first time proposes to mine word boundaries from parallel speech/text data. First we collect parallel speech/text data from two Internet sources that are related with CWS data used in our experiments. Then, we obtain character-level alignments and design simple heuristic rules for determining word boundaries according to pause duration between adjacent characters. Finally, we present an effective complete-then-train strategy that can better utilize extra naturally annotated data for model training. Experiments demonstrate our approach can significantly boost CWS performance in both cross-domain and low-resource scenarios.
Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario.To address these issues, we propose a novel Reliable Causal chain reasoning framework (ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks (SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.
Most previous studies of document-level event extraction mainly focus on building argument chains in an autoregressive way, which achieves a certain success but is inefficient in both training and inference. In contrast to the previous studies, we propose a fast and lightweight model named as PTPCG. In our model, we design a novel strategy for event argument combination together with a non-autoregressive decoding algorithm via pruned complete graphs, which are constructed under the guidance of the automatically selected pseudo triggers. Compared to the previous systems, our system achieves competitive results with 19.8\% of parameters and much lower resource consumption, taking only 3.8\% GPU hours for training and up to 8.5 times faster for inference. Besides, our model shows superior compatibility for the datasets with (or without) triggers and the pseudo triggers can be the supplements for annotated triggers to make further improvements. Codes are available at https://github.com/Spico197/DocEE .