Purpose: The aim of the present study was to determine the dose effect of palifermin (recombinant human keratinocyte growth factor, rHuKGF) for reduction of the response of oral mucosa to fractionated radiotherapy in a mouse model.
Abstract Introduction Identification of minimal residual disease (MRD) following curative intervention of localized non-small cell lung cancer (NSCLC) holds promise for identifying patients who are at higher risk of relapse and who would benefit from adjuvant treatment. Current routine clinical practice involves serial radiographic imaging following surgery to detect macroscopic disease. Liquid biopsy can identify patients who have MRD without macroscopic disease. Currently available assays have only identified circulating tumor DNA (ctDNA) in a limited number of cases with early stage NSCLC. More sensitive methods are needed to accurately identify the majority of patients who will relapse. Here we evaluate the performance of InVision®MRD, a personalized sequencing assay for plasma cell-free DNA, for detection of ctDNA in patients with early-stage NSCLC undergoing treatment with curative intent. Methods InVision®MRD is a highly sensitive in vitro diagnostic assay, currently available for research use only (RUO), that can detect the presence of tumor DNA traces in cell-free DNA from plasma samples of cancer patients. InVision®MRD identifies tumor-specific variants from exome sequencing of tumor tissue and tracks them in plasma specimens by multiplex PCR and high-depth next-generation sequencing. We evaluated the detection of ctDNA in plasma samples collected from the LUng cancer - CIrculating tumor DNA (LUCID) study, which collected plasma samples from 100 patients with NSCLC stages I-III who underwent radical treatment with curative intent, either surgery or radiotherapy ± chemotherapy. Of patients in the LUCID study, 60% had stage I NSCLC and 40% patients had stage II/III disease, according to TNM 7th edition. Results To evaluate the InVision®MRD assay, a subset of samples from the LUCID study were analyzed. Samples were collected before and after surgery and chemo-radiotherapy from patients with early-stage NSCLC. Using multiplexed analysis of 48 patient-specific variants and high-depth sequencing, ctDNA was detected in 50% of pre-treatment samples analyzed from the first set of 18 patients, at ctDNA fractions ranging from 20 ppm (equivalent to 0.002%) to 19576 ppm (equivalent to 1.958%). Conclusions These findings highlight an opportunity to improve ctDNA detection for early stage NSCLC using a patient-specific plasma sequencing assay. Initial detection rates have reached 50% for patients with early-stage disease prior to treatment, including detection of ctDNA to levels as low as a few parts per million. Together with further data to be presented, this suggests a possible route to improving treatment for early stage NSCLC by detection of residual disease post treatment and for monitoring for early detection of relapse. Citation Format: Katrin Heider, Davina Gale, Andrea Ruiz-Valdepenas, Giovanni Marsico, Garima Sharma, Malcolm Perry, Robert Osborne, Karen Howarth, Tadd Lazarus, Viona Rundell, Jelena Belic, Jerome Wulff, Susan Harden, Doris M. Rassl, Robert C. Rintoul, Nitzan Rosenfeld. Sensitive detection of ctDNA in early stage non-small cell lung cancer patients with a personalized sequencing assay [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 735.
In vielen technischen Anwendungen ist zur Verbesserung der Energieeffizienz die Reibung in Wälzlagerungen zu reduzieren. Wälzlager, die hohen Zentripetalbeschleunigungen ausgesetzt sind, können eine stark erhöhte Reibung an den Käfigkontakten aufweisen, da der bordgeführte Käfig gegen den Außenring gedrückt und verformt wird. Zur gezielten Entwicklung neuer reibungsarmer Lagerlösungen ist in solchen Anwendungsfällen sowohl die Schmierstoffhydrodynamik in den Käfigkontakten als auch die Käfigelastizität in der Wälzlagerdynamiksimulation zu berücksichtigen. Die Berücksichtigung der Schmierstoffhydrodynamik erfolgt mit Hilfe analytischer Berechnungsansätze differenziert für jeden Käfigkontakt. Die Kontaktberechnung bleibt damit weiterhin recheneffizient, numerisch stabil und für die Dynamiksimulation von Wälzlagern geeignet. Eine Umsetzung dieses Ansatzes erfolgt im Wälzlagerdynamiksimulationsprogramm CABA3D. Eine ausreichend hohe Genauigkeit der hy...
Current evidence suggests that plasma cell-free DNA (cfDNA) is fragmented around a mode of 166 bp. Data supporting this view has been mainly acquired through the analysis of double-stranded cfDNA. The characteristics and diagnostic potential of single-stranded and damaged double-stranded cfDNA in healthy individuals and cancer patients remain unclear. Here, through a combination of high-affinity magnetic bead-based DNA extraction and single-stranded DNA sequencing library preparation (MB-ssDNA), we report the discovery of a large proportion of cfDNA fragments centered at ∼50 bp. We show that these "ultrashort" cfDNA fragments have a greater relative abundance in plasma of healthy individuals (median = 19.1% of all sequenced cfDNA fragments,
Abstract Background Cell-free tumor-derived DNA (ctDNA) allows non-invasive monitoring of cancers, but its utility in renal cell cancer (RCC) has not been established. Methods Here, a combination of untargeted and targeted sequencing methods, applied to two independent cohorts of patients ( n = 91) with various renal tumor subtypes, were used to determine ctDNA content in plasma and urine. Results Our data revealed lower plasma ctDNA levels in RCC relative to other cancers of similar size and stage, with untargeted detection in 27.5% of patients from both cohorts. A sensitive personalized approach, applied to plasma and urine from select patients ( n = 22) improved detection to ~ 50%, including in patients with early-stage disease and even benign lesions. Detection in plasma, but not urine, was more frequent amongst patients with larger tumors and in those patients with venous tumor thrombus. With data from one extensively characterized patient, we observed that plasma and, for the first time, urine ctDNA may better represent tumor heterogeneity than a single tissue biopsy. Furthermore, in a subset of patients ( n = 16), longitudinal sampling revealed that ctDNA can track disease course and may pre-empt radiological identification of minimal residual disease or disease progression on systemic therapy. Additional datasets will be required to validate these findings. Conclusions These data highlight RCC as a ctDNA-low malignancy. The biological reasons for this are yet to be determined. Nonetheless, our findings indicate potential clinical utility in the management of patients with renal tumors, provided improvement in isolation and detection approaches.
e21032 Background: Circulating tumour DNA (ctDNA) is released by cancer cells into the bloodstream and can be analysed via liquid biopsy, providing a real-time snapshot of tumour burden. After treatment, ctDNA concentrations may be low, making detection challenging, and collecting larger sample volumes may be impractical. Our study aims to achieve high-sensitivity monitoring of melanoma patients melanoma on therapy, maximising the number of mutations targeted per patient by individualised sequencing. Methods: 72 patients with stage 3 or 4 melanoma have so far been recruited to MelResist, a translational research study. 235 plasma, urine, tumour and buffy coat samples have been analysed for 10 BRAF mutant metastatic melanoma patients receiving systemic therapies, and 30 matched CT scans were analysed for RECIST response. Exome or targeted sequencing were carried out on tumour samples and plasma at baseline and progression and mutations identified were used to design individualised amplicon and hybrid-capture sequencing panels targeting hundreds to thousands of mutations per patient. Results: Baseline ctDNA allele fraction predicted for overall survival ( r = -0.56, p < 0.05). Longitudinal analysis of ctDNA showed that mutant allele fractions significantly correlated with tumour burden from CT imaging ( r = 0.79, p < 0.0001) and ctDNA changes were concordant with 20/22 (90%) of RECIST response events. ctDNA allele fractions increased with a lead time of 70 days relative to serum lactate dehydrogenase, a standard measure of disease burden (IQR = 42-142 days). Targeting multiple mutations per patient enabled detection of less than one mutant genome copy per sample and allowed comprehensive monitoring of clonal evolution on therapy, even using limited sample volumes. Conclusions: Analysis of an initial cohort of BRAF mutant metastatic melanoma patients has confirmed feasibility to apply an individualised targeted sequencing panel on both plasma and urine DNA. For a given sample volume, monitoring multiple mutations improves detection sensitivity compared to targeting individual loci, has predictive value and can be applied to all melanoma patients, irrespective of BRAF mutation status.