Polarization sensitive optical coherence tomography (PSOCT) has been shown to image and delineate white matter fibers in a label-free manner by revealing optical birefringence within the myelin sheath using a microscope setup. In this proof-of-concept study, we adapt recent advancements in endoscopic PSOCT to perform depth-resolved imaging of white matter structures deep inside intact porcine brain tissue ex-vivo, through a small, rotational fiber probe. The probe geometry is comparable to microelectrodes currently used in neurosurgical interventions. The presented imaging system is mobile, robust, and uses biologically safe levels of optical radiation making it well suited for clinical translation. In neurosurgery, where accuracy is imperative, endoscopic PSOCT through a narrow-gauge fiber probe could provide intra-operative feedback on the location of critical white matter structures.
Despite promise in early pilot studies, clinical translation of intravascular PS-OCT has been limited by the complexity of incorporating polarization modulation. We present a signal processing pipeline which uses maximum-likelihood estimation to reconstruct the polarization properties of tissue measured with a single input polarization state (SIPS-OCT), enabling polarization-sensitivity with existing intravascular OCT devices. SIPS-OCT estimates both the depth resolved birefringence and optic axis orientation, with excellent qualitative and quantitative comparisons to conventional dual-input state PS-OCT. These results present an encouraging step towards removing barriers to PS-OCT adoption by enabling polarization-sensitivity in existing intravascular OCT systems.
We demonstrate polarization sensitive OCT using miniaturized needle probes. Employing the Mueller-formalism, we reconstruct tissue birefringence and retrieve the depolarization index of ex vivo tissue samples, providing contrast complementary to the structural intensity signal.
Figure S2 from Distinguishing Tumor from Associated Fibrosis to Increase Diagnostic Biopsy Yield with Polarization-Sensitive Optical Coherence Tomography
The microscopic tissue structure and organization influence the polarization of light. Intravascular polarimetry leverages this compelling intrinsic contrast mechanism by using polarization-sensitive optical frequency domain imaging to measure the polarization properties of the coronary arterial wall. Tissues rich in collagen and smooth muscle cells appear birefringent, while the presence of lipid causes depolarization, offering quantitative metrics related to the presence of important components of coronary atherosclerosis. Here, we review the basic principle, the interpretation of polarization signatures, and first clinical investigations of intravascular polarimetry and discuss how this extension of contemporary intravascular imaging may advance our knowledge and improve clinical practice in the future.
A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.
Deep venous thrombosis (DVT) is a medical condition with significant post-event morbidity and mortality coupled with limited treatment options. Treatment strategy and efficacy are highly dependent on the structural composition of the thrombus, which evolves over time from initial formation and is currently unevaluable with standard clinical testing. Here, we investigate the use of intravascular polarization-sensitive optical coherence tomography (PS-OCT) to assess thrombus morphology and composition in a rat DVT model in-vivo , including changes that occur over the thrombus aging process. PS-OCT measures tissue birefringence, which provides contrast for collagen and smooth muscle cells that are present in older, chronic clots. Thrombi in the inferior vena cava of two cohorts of rats were imaged in-vivo with intravascular PS-OCT at 24 hours (acute, n rats = 3, 73 cross-sections) or 28 days (chronic, n rats = 4, 41 cross-sections) after thrombus formation. Co-registered histology was labelled by an independent pathologist to establish ground-truth clot composition. Automated analysis of OCT cross-sectional images differentiated acute and chronic thrombi with 97.6% sensitivity and 98.6% specificity using a linear discriminant model comprised of both polarization and conventional OCT metrics. These results support PS-OCT as a highly sensitive imaging modality for the assessment of DVT composition to differentiate acute and chronic thrombi. Intravascular PS-OCT imaging could be integrated with advanced catheter-based treatment strategies and serve to guide therapeutic decision-making and deployment, by offering an accurate assessment of DVT patients in real time.
Multimode fiber (MMF) endoscopy offers high spatial resolution in an ultra-small form factor, yet several technical challenges remain to be addressed to realize practical MMF imaging. Here, we demonstrate a strategy for confocal reflectance imaging through MMF to improve contrast owing to optical sectioning and enable volumetric imaging. Instead of physically focusing the light into the sample, it uses a series of distinct illumination patterns obtained by varying the proximal coupling of the illumination. This alleviates the need for active wave-control and translates into a speed advantage critical for practical MMF imaging.
Significance: Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. Aim: We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. Approach: Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid–water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. Results: Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. Conclusion: PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.