Measuring transport properties like diffusion and directional flow is essential for understanding dynamics within heterogeneous systems including living cells and novel materials. Fluorescent molecules traveling within these inhomogeneous environments under the forces of Brownian motion and flow exhibit fluctuations in their concentration, which are directly linked to the transport properties. We present a method utilizing single photon interference and fluorescence correlation spectroscopy (FCS) to simultaneously measure transport of fluorescent molecules within aqueous samples. Our method, within seconds, measures transport in thousands of homogenous voxels (100 nm)3 and under certain conditions, eliminates photo-physical artifacts associated with blinking of fluorescent molecules. A comprehensive theoretical framework is presented and validated by measuring transport of quantum dots, associated with VSV-G receptor along cellular membranes as well as within viscous gels.
Fluorescence correlation spectroscopy (FCS) measurements have been carried out on the intestinal fatty acid binding protein (IFABP) to study microsecond dynamics of the protein in its native state as well as in pH-induced intermediates. IFABP is a small (15 kDa) protein that consists mostly of antiparallel β-strands enclosing a large central cavity into which the ligand binds. Because this protein does not contain cysteine, two cysteine mutants (Val60Cys and Phe62Cys) have been prepared and covalently modified with fluorescein. Based on fluorescence measurements, one of the mutants (Val60Flu) has the fluorescein moiety inside the cavity of the protein, whereas the fluorescein is exposed to solvent in the other (Phe62Flu). The protein modified at position 60 demonstrates the presence of a conformational event on the order of 35 μsec, which is not seen in the other mutant (Phe62Flu). The amplitude of this fast conformational event decreases sharply at low pH as the protein unfolds. Experiments measuring the diffusion as a function of pH indicate the formation of a compact state distinct from the native state at about pH 3.5. Steady state fluorescence and far-UV CD indicates that unfolding occurs at pH values below pH 3.
HIV Gag polymerizes on the plasma membrane to form virus like particles (VLPs) that have similar diameters to wild-type viruses. We use multicolor, dual-penetration depth, total internal reflection fluorescence microscopy, which corrects for azimuthal movement, to image the assembly of individual VLPs from the time of nucleation to the recruitment of VPS4 (a component of the endosomal sorting complexes required for transport, and which marks the final stage of VLP assembly). Using a mathematical model for assembly and maximum-likelihood comparison of fits both with and without pauses, we detect pauses during Gag polymerization in 60% of VLPs. Pauses range from 2 to 20 min, with an exponentially distributed duration that is independent of cytosolic Gag concentration. VLPs assembled with late domain mutants of Gag (which do not recruit the key endosomal sorting complexes required for transport proteins Alix or TSG101) exhibit similar pause distributions. These pauses indicate that a single rate-limiting event is required for continuation of assembly. We suggest that pauses are either related to incorporation of defects in the hexagonal Gag lattice during VLP assembly or are caused by shortcomings in interactions of Gag with essential and still undefined cellular components during formation of curvature on the plasma membrane.
Abstract HIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses. In this study, we present a method for purification of HIV virions which minimizes forces applied to virions while maximizing the efficiency of collection. This method allows us to capture between 1,000 and 5,000 HIV virions released from individual HEK293 cells after transfection with the NL4.3 HIV backbone, a 10 fold advantage over other methods. We utilized this approach to investigate HIV core formation from several constructs: pNL4-3(RT:D 185 A&D 186 A) with an inactive reverse transcriptase, NL4.3(IN: V 165 A&R 166 A) with a type-II integrase mutation, and NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) featuring an edited Ѱ packaging signal. Notably, virions from NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) displayed a mixed population, comprising immature virions, empty cores, and cores with detectable internal density. Conversely, virions derived from NL4.3(IN: V 165 A&R 166 A) exhibited a type II integrase mutant phenotype characterized by empty cores and RNP density localized around the cores, consistent with previous studies. In contrast, virions released from pNL4-3(RT:D 185 A&D 186 A) displayed mature cores containing detectable RNP density. We suggest that the purification methods developed in this study can significantly facilitate the characterization of enveloped viruses.
Under sustained pumping, kinetics of macroscopic nonlinear biochemical reaction systems far from equilibrium either can be in a stationary steady state or can execute sustained oscillations about a fixed mean. For a system of two dynamic species X and Y, the concentrations n x and n y will be constant or will repetitively trace a closed loop in the ( n x , n y ) phase plane, respectively. We study a mesoscopic system with n x and n y very small; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We show that n x and n y execute cyclic random walks in the ( n x , n y ) plane whether or not the deterministic kinetics for the corresponding macroscopic system represents a steady or an oscillating state. Probability distributions and correlation functions for n x ( t ) and n y ( t ) show quantitative but not qualitative differences between states that would appear as either oscillating or steady in the corresponding macroscopic systems. A diffusion-like equation for probability P ( n x , n y , t ) is obtained for the two-dimensional Brownian motion in the ( n x , n y ) phase plane. In the limit of large n x , n y , the deterministic nonlinear kinetics derived from mass action is recovered. The nature of large fluctuations in an oscillating nonequilibrium system and the conceptual difference between “thermal stochasticity” and “temporal complexity” are clarified by this analysis. This result is relevant to fluorescence correlation spectroscopy and metabolic reaction networks.
Abstract SARS-CoV-2 virus is the causative agent of COVID-19. Here we demonstrate that non-infectious SARS-CoV-2 virus like particles (VLPs) can be assembled by co-expressing the viral proteins S, M and E in mammalian cells. The assembled SARS-CoV-2 VLPs possess S protein spikes on particle exterior, making them ideal for vaccine development. The particles range in shape from spherical to elongated with a characteristic size of 129 ± 32 nm. We further show that SARS-CoV-2 VLPs dried in ambient conditions can retain their structural integrity upon repeated scans with Atomic Force Microscopy up to a peak force of 1 nN.