Background. Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens. Total global economic losses to the poultry industry due to NE is estimated to be over 2 billion dollars annually. Traditionally, NE has been effectively controlled by inclusion of antibiotics in the diet of poultry. However, recent concerns regarding the impact of this practice on increasing antibiotic resistance in human pathogens have led us to consider alternative approaches, such as vaccination, for controlling this disease. NE strains of C. perfringensproduce two major toxins, a-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. Methods. We have developed a fusion protein combining a non-toxic carboxyl-terminal domain of a-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamianato enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamianausing a geminiviral replicon transient expression system, purified by metal affinity chromatography, and used to immunize broiler birds. Results. Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringenswhen treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB toxoid is a promising vaccine candidate for controlling NE in poultry.
Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens. Total global economic losses to the poultry industry due to NE is estimated to be over two billion dollars annually. Traditionally, NE has been effectively controlled by inclusion of antibiotics in the diet of poultry. However, recent concerns regarding the impact of this practice on increasing antibiotic resistance in human pathogens have led us to consider alternative approaches, such as vaccination, for controlling this disease. NE strains of C. perfringens produce two major toxins, a-toxin and NetB. Immune responses against either toxin can provide partial protection against NE.We have developed a fusion protein combining a non-toxic carboxyl-terminal domain of a-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system, purified by metal affinity chromatography, and used to immunize broiler birds.Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB toxoid is a promising vaccine candidate for controlling NE in poultry.
The objectives of this study is to estimate rates and identify factors associated with erythema nodosum (EN) and pyoderma gangrenosum (PG) in pediatric patients with inflammatory bowel disease (IBD).
Cutaneous lichen planus (LP) is a recalcitrant, difficult-to-treat, inflammatory skin disease characterized by pruritic, flat-topped, violaceous papules on the skin. Baricitinib is an oral Janus kinase (JAK) 1/2 inhibitor that interrupts the signaling pathway of interferon gamma (IFN)-γ, a cytokine implicated in the pathogenesis of LP.
Abstract Cutaneous squamous cell carcinoma (cSCC) is one of the most common cancers in humans and kills as many people annually as melanoma. The mutational and transcriptional landscape of cSCC has identified driver mutations associated with disease progression as well as key pathway activation in the progression of pre-cancerous lesions. The understanding of the transcriptional changes with respect to high-risk clinical/histopathological features and outcome is poor. Here, we examine stage-matched, outcome-differentiated cSCC and associated clinicopathologic risk factors using whole exome and transcriptome sequencing on matched samples. Exome analysis identified key driver mutations including TP53 , CDKN2A , NOTCH1 , SHC4 , MIIP , CNOT1 , C17orf66 , LPHN22 , and TTC16 and pathway enrichment of driver mutations in replicative senescence, cellular response to UV, cell-cell adhesion, and cell cycle. Transcriptomic analysis identified pathway enrichment of immune signaling/inflammation, cell-cycle pathways, extracellular matrix function, and chromatin function. Our integrative analysis identified 183 critical genes in carcinogenesis and were used to develop a gene expression panel (GEP) model for cSCC. Three outcome-related gene clusters included those involved in keratinization, cell division, and metabolism. We found 16 genes were predictive of metastasis (Risk score ≥ 9 Met & Risk score < 9 NoMet). The Risk score has an AUC of 97.1% (95% CI: 93.5% - 100%), sensitivity 95.5%, specificity 85.7%, and overall accuracy of 90%. Eleven genes were chosen to generate the risk score for Overall Survival (OS). The Harrell’s C-statistic to predict OS is 80.8%. With each risk score increase, the risk of death increases by 2.47 (HR: 2.47, 95% CI: 1.64-3.74; p<0.001) after adjusting for age, immunosuppressant use, and metastasis status.