We have developed an observing scheduling and archive system for the 1.2 meter Mercator Telescope. The goal was to optimize the specific niche of this modern small telescope in observational astrophysics: the building-up of long-term time series of photometric or high-resolution spectroscopic data with appropriate sampling for any given scientific program. This system allows PIs to easily submit their technical requirements and keep track of the progress of the observing programmes. The scheduling system provides the observer with an optimal schedule for the night which takes into account the current observing conditions as well as the priorities and requirements of the programmes in the queue. The observer can conveniently plan an observing night but also quickly adapt it to changing conditions. The archiving system automatically processes new files as they are created, including reduced data. It extracts the metadata and performs the normalization. A user can query, inspect and retrieve observing data. The progress of individual programmes, including timeline and reduced data plots can be seen at any time. Our MESA project is based on free and open source software (FOSS) using the Python programming language. The system is fully integrated with the Mercator Observing Control System1 (MOCS).
As the new control system of the Mercator Telescope is being finalized, we can review some technologies and design methodologies that are advantageous, despite their relative uncommonness in astronomical instrumentation. Particular for the Mercator Telescope is that it is controlled by a single high-end soft-PLC (Programmable Logic Controller). Using off-the-shelf components only, our distributed embedded system controls all subsystems of the telescope such as the pneumatic primary mirror support, the hydrostatic bearing, the telescope axes, the dome, the safety system, and so on. We show how real-time application logic can be written conveniently in typical PLC languages (IEC 61131-3) and in C++ (to implement the pointing kernel) using the commercial TwinCAT 3 programming environment. This software processes the inputs and outputs of the distributed system in real-time via an observatory-wide EtherCAT network, which is synchronized with high precision to an IEEE 1588 (PTP, Precision Time Protocol) time reference clock. Taking full advantage of the ability of soft-PLCs to run both real-time and non real-time software, the same device also hosts the most important user interfaces (HMIs or Human Machine Interfaces) and communication servers (OPC UA for process data, FTP for XML configuration data, and VNC for remote control). To manage the complexity of the system and to streamline the development process, we show how most of the software, electronics and systems engineering aspects of the control system have been modeled as a set of scripts written in a Domain Specific Language (DSL). When executed, these scripts populate a Knowledge Base (KB) which can be queried to retrieve specific information. By feeding the results of those queries to a template system, we were able to generate very detailed "browsable" web-based documentation about the system, but also PLC software code, Python client code, model verification reports, etc. The aim of this paper is to demonstrate the added value that technologies such as soft-PLCs and DSL-scripts and design methodologies such as knowledge-based engineering can bring to astronomical instrumentation.
We present the MeerLICHT and BlackGEM telescopes, which are wide-field optical telescopes that are currently being built to study transient phenomena, gravitational wave counterparts and variable stars. The telescopes have 65 cm primary mirrors and a 2.7 square degree field-of-view. The MeerLICHT and BlackGEM projects have different science goals, but will use identical telescopes. The first telescope, MeerLICHT, will be commissioned at Sutherland (South Africa) in the first quarter of 2017. It will co-point with MeerKAT to collect optical data commensurate with the radio observations. After careful analysis of MeerLICHT's performance, three telescopes of the same type will be commissioned in La Silla (Chile) in 2018 to form phase I of the BlackGEM array. BlackGEM aims at detecting and characterizing optical counterparts of gravitational wave events detected by Advanced LIGO and Virgo. In this contribution we present an overview of the science goals, the design and the status of the two projects.
We present a spectroscopic analysis of MWC 314, a luminous blue variable (LBV) candidate with an extended bipolar nebula. The detailed spectroscopic variability is investigated to determine if MWC 314 is a massive binary system with a supersonically accelerating wind or a low-mass B[e] star. We compare the spectrum and spectral energy distribution to other LBVs (such as P Cyg) and find very similar physical wind properties, indicating strong kinship. We combined long-term high-resolution optical spectroscopic monitoring and V-band photometric observations to determine the orbital elements and stellar parameters and to investigate the spectral variability with the orbital phases. We developed an advanced model of the large-scale wind-velocity and wind-density structure with 3-D radiative transfer calculations that fit the orbitally modulated P Cyg profile of He I lam5876, showing outflow velocities above 1000 km/s. We find that MWC 314 is a massive semi-detached binary system of ~1.22 AU, observed at an inclination angle of i=72.8 deg. with an orbital period of 60.8 d and e=0.23. The primary star is a low-vsini LBV candidate of m1=39.6 Msun and R1=86.8 Rsun. The detailed radiative transfer fits show that the geometry of wind density is asymmetric around the primary star with increased wind density by a factor of 3.3, which leads the orbit of the primary. The variable orientation causes the orbital modulation that is observed in absorption portions of P Cyg wind lines. Wind accretion in the system produces a circumbinary disc. MWC 314 is in a crucial evolutionary phase of close binary systems, when the massive primary star has its H envelope being stripped and is losing mass to a circumbinary disc. MWC 314 is a key system for studying the evolutionary consequences of these effects.
The space missions TESS and PLATO plan to double the number of 4000 exoplanets already discovered and will measure the size of thousands of exoplanets around the brightest stars in the sky, allowing ground-based radial velocity spectroscopy follow-up to determine the orbit and mass of the detected planets. The new facility we are developing, MARVEL (Raskin et al. this conference), will enable the ground-based follow-up of large numbers of exoplanet detections, expected from TESS and PLATO, which cannot be carried out only by the current facilities that achieve the necessary radial velocity accuracy of 1 m/s or less. This paper presents the MARVEL observation strategy and performance analysis based on predicted PLATO transit detection yield simulations. The resulting observation scenario baseline will help in the instrument design choices and demonstrate the effectiveness of MARVEL as a TESS and PLATO science enabling facility.
The warm calibration unit (WCU) is one of the subsystems of the future METIS instrument on the Extremely Large Telescope (ELT). Operating at room temperature, the WCU is mounted above the main cryostat of METIS. It will be employed as a calibration reference for science observations, as well as for verification and alignment purposes during the AIT phase. The WCU is designed and constructed at the University of Cologne, one of the partner in the METIS consortium. WCU recently went through a successful Optics Long Lead Items Review by ESO. Now, the WCU is entering the last phase of the project, the Final Design Review (FDR). In this paper, we present the current status of the WCU design and summarize the mechanical and system engineering work. We describe the design of the hexapod formed by six manually adjustable links and its interfaces with the METIS cryostat together with the CFRP-based optical bench and Invar-based optical mounts. Lab prototyping results of one actuator under a nominal load of 5 kN confirms the achievable high linear resolution (20 µm). We present the status of the WCU laser cabinet. We discuss the lastest progress in the laboratory testing of some WCU functionalities, such as the fibre-fed monochromatic sources for the spectral calibration of the LM-Spectrograph of METIS, and the spatial calibration sources using the integrating sphere. We detail the activities foreseen until FDR together with the preparation of the sub-system MAIT work.
Context. Previous studies have shown that many post-asymptotic giant branch (AGB) stars with dusty disks are associated with single-lined binary stars. The inferred orbital separations are too small to accommodate a fully grown AGB star, hence these systems represent a new evolutionary channel that bypasses a full AGB evolution.
Provides an abstract of the workshop presentation and a brief professional biography of the presenter. The complete presentation was not made available for publication as part of the conference proceedings.