Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection.
Abstract Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK 1 . Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.
Febrile children below 3 months have a higher risk of serious bacterial infections, which often leads to extensive diagnostics and treatment. There is practice variation in management due to differences in guidelines and their usage and adherence. We aimed to assess whether management in febrile children below 3 months attending European Emergency Departments (EDs) was according to the guidelines for fever. This study is part of the MOFICHE study, which is an observational multicenter study including routine data of febrile children (0-18 years) attending twelve EDs in eight European countries. In febrile children below 3 months (excluding bronchiolitis), we analyzed actual management compared to the guidelines for fever. Ten EDs applied the (adapted) NICE guideline, and two EDs applied local guidelines. Management included diagnostic tests, antibiotic treatment, and admission. We included 913 children with a median age of 1.7 months (IQR 1.0-2.3). Management per ED varied as follows: use of diagnostic tests 14-83%, antibiotic treatment 23-54%, admission 34-86%. Adherence to the guideline was 43% (374/868) for blood cultures, 29% (144/491) for lumbar punctures, 55% (270/492) for antibiotic prescriptions, and 67% (573/859) for admission. Full adherence to these four management components occurred in 15% (132/868, range 0-38%), partial adherence occurred in 56% (484/868, range 35-77%).There is large practice variation in management. The guideline adherence was limited, but highest for admission which implies a cautious approach. Future studies should focus on guideline revision including new biomarkers in order to optimize management in young febrile children.• Febrile children below 3 months have a higher risk of serious bacterial infections, which often leads to extensive diagnostics and treatment. • There is practice variation in management of young febrile children due to differences in guidelines and their usage and adherence.• Full guideline adherence is limited, whereas partial guideline adherence is moderate in febrile children below 3 months across Europe. • Guideline revision including new biomarkers is needed to improve management in young febrile children.
To assess and describe the aetiology and management of febrile illness in children with primary or acquired immunodeficiency at high risk of serious bacterial infection, as seen in emergency departments in tertiary hospitals. Prospective data on demographics, presenting features, investigations, microbiology, management, and outcome of patients within the 'Biomarker Validation in HR patients' database in PERFORM, were analysed. Immunocompromised children (< 18 years old) presented to fifteen European hospitals in nine countries, and one Gambian hospital, with fever or suspected infection and clinical indication for blood investigations. Febrile episodes were assigned clinical phenotypes using the validated PERFORM algorithm. Logistic regression was used to assess the effect size of predictive features of proven/presumed bacterial or viral infection. A total of 599 episodes in 482 children were analysed. Seventy-eight episodes (13.0%) were definite bacterial, 67 episodes probable bacterial (11.2%), and 29 bacterial syndrome (4.8%). Fifty-five were definite viral (9.2%), 49 probable viral (8.2%), and 23 viral syndrome (3.8%). One hundred ninety were unknown bacterial or viral infections (31.7%), and 108 had inflammatory or other non-infectious causes of fever (18.1%). Predictive features of proven/presumed bacterial infection were ill appearance (OR 3.1 (95% CI 2.1-4.6)) and HIV (OR 10.4 (95% CI 2.0-54.4)). Ill appearance reduced the odds of having a proven/presumed viral infection (OR 0.5 (95% CI 0.3-0.9)). A total of 82.1% had new empirical antibiotics started on admission (N = 492); 94.3% proven/presumed bacterial (N = 164), 66.1% proven/presumed viral (N = 84), and 93.2% unknown bacterial or viral infections (N = 177). Mortality was 1.9% (N = 11) and 87.1% made full recovery (N = 522). Conclusion: The aetiology of febrile illness in immunocompromised children is diverse. In one-third of cases, no cause for the fever will be identified. Justification for standard intravenous antibiotic treatment for every febrile immunocompromised child is debatable, yet effective. Better clinical decision-making tools and new biomarkers are needed for this population. What is Known: • Immunosuppressed children are at high risk for morbidity and mortality of serious bacterial and viral infection, but often present with fever as only clinical symptom. • Current diagnostic measures in this group are not specific to rule out bacterial infection, and positivity rates of microbiological cultures are low. What is New: • Febrile illness and infectious complications remain a significant cause of mortality and morbidity in HR children, yet management is effective. • The aetiology of febrile illness in immunocompromised children is diverse, and development of pathways for early discharge or cessation of intravenous antibiotics is debatable, and requires better clinical decision-making tools and biomarkers.
Abstract Respiratory syncytial virus (RSV) and influenza viruses are important global causes of morbidity and mortality. We evaluated the diagnostic accuracy of the Luminex NxTAG respiratory pathogen panels (RPPs)™ (index) against other RPPs (comparator) for detection of RSV and influenza viruses. Studies comparing human clinical respiratory samples tested with the index and at least one comparator test were included. A random-effect latent class meta-analysis was performed to assess the specificity and sensitivity of the index test for RSV and influenza. Risk of bias was assessed using the QUADAS-2 tool and certainty of evidence using GRADE. Ten studies were included. For RSV, predicted sensitivity was 99% (95% credible interval [CrI] 96–100%) and specificity 100% (95% CrI 98–100%). For influenza A and B, predicted sensitivity was 97% (95% CrI 89–100) and 98% (95% CrI 88–100) respectively; specificity 100% (95% CrI 99–100) and 100% (95% CrI 99–100), respectively. Evidence was low certainty. Although index sensitivity and specificity were excellent, comparators’ performance varied. Further research with clear patient recruitment strategies could ascertain performance across different populations. Protocol Registration: Prospero CRD42021272062.
Abstract Purpose To assess and describe the aetiology and management of febrile illness in children with primary or acquired immunodeficiency at high-risk of serious bacterial infection, as seen in emergency departments in tertiary hospitals. Methods Prospective data on demographics, presenting features, investigations, microbiology, management, and outcome of patients within the ‘Biomarker Validation in HR patients’ database in PERFORM, were analysed. Immunocompromised children (<18 years old) presented to fifteen European hospitals in nine countries, and one Gambian hospital, with fever or suspected infection and clinical indication for blood investigations. Febrile episodes were assigned clinical phenotypes using the validated PERFORM algorithm. Logistic regression was used to assess effect size of predictive features of proven/presumed bacterial or viral infection. Results 599 episodes in 482 children were analysed. Only 78 episodes (13.0%) were definite bacterial, 55 definite viral (9.2%), and 190 were unknown bacterial or viral infections (31.7%). Predictive features of proven/presumed bacterial infection were ill appearance (OR 3.1 (95%CI 2.1-4.6)) and HIV (OR 10.4 (95%CI 2.0-54.4)). Ill appearance reduced the odds of having a proven/presumed viral infection (OR 0.5 (95%CI 0.3-0.9)). 82.1% had new empirical antibiotics started on admission (N=492); 94.3% of proven/presumed bacterial, 66.1% of proven/presumed viral, and 93.2% of unknown bacterial or viral infections. Mortality was 1.9% and 87.1% made full recovery. Conclusions Aetiology of febrile illness in immunocompromised children is diverse. In one-third of cases no cause for the fever will be identified. Justification for standard intravenous antibiotic treatment for every febrile immunocompromised child is debatable, yet effective. Better clinical decision-making tools and new biomarkers are needed for this population.
Abstract Transcriptomic analyses reveal the status of cells, tissues, or organisms, across states of health and disease. RNA velocity adds a temporal dimension to single cell analyses, predicting future transcriptomic and phenotypic states, based on current spliced and unspliced mRNA of each cell. We hypothesized that RNA velocity could be adapted to predict future clinical status of individuals with acute illness using their whole-blood transcriptome. We developed a method for quantitative prediction of transitions in clinical state from a single time-point sample, which we call VeloCD. This predicted transcriptomic trajectories and future infection status in influenza A and SARS-CoV-2 human challenge studies. In HIV-TB coinfected individuals, it predicted the onset of immune reconstitution inflammatory syndrome. In a multinational observational study of acutely unwell febrile children, VeloCD predicted those with greatest medical care requirements. Our results demonstrate a novel application of RNA velocity to predict the trajectory of acute illness.
Background: Diagnosing febrile illness in immunocompromised children at presentation to hospital remains a challenge. Serious bacterial infection can cause significant mortality and morbidity, but conventional diagnostics using culture-based technology results are often negative. Molecular pathogen testing might increase the yield of pathogen detection in this population, subsequently potentially altering clinical management and improving outcome.
The PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.Febrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.Of 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.Most febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.EU Horizon 2020 grant 668303.
Abstract Background Optimization of antimicrobial stewardship is key to tackling antimicrobial resistance, which is exacerbated by overprescription of antibiotics in pediatric emergency departments (EDs). We described patterns of empiric antibiotic use in European EDs and characterized appropriateness and consistency of prescribing. Methods Between August 2016 and December 2019, febrile children attending EDs in 9 European countries with suspected infection were recruited into the PERFORM (Personalised Risk Assessment in Febrile Illness to Optimise Real-Life Management) study. Empiric systemic antibiotic use was determined in view of assigned final “bacterial” or “viral” phenotype. Antibiotics were classified according to the World Health Organization (WHO) AWaRe classification. Results Of 2130 febrile episodes (excluding children with nonbacterial/nonviral phenotypes), 1549 (72.7%) were assigned a bacterial and 581 (27.3%) a viral phenotype. A total of 1318 of 1549 episodes (85.1%) with a bacterial and 269 of 581 (46.3%) with a viral phenotype received empiric systemic antibiotics (in the first 2 days of admission). Of those, the majority (87.8% in the bacterial and 87.0% in the viral group) received parenteral antibiotics. The top 3 antibiotics prescribed were third-generation cephalosporins, penicillins, and penicillin/β-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the viral group, 216 of 269 (80.3%) received ≥1 antibiotic in the “Watch” category. Conclusions Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial overprescription of antibiotics. A significant proportion of patients with a viral phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology could significantly improve antimicrobial stewardship.