The most significant difference between bacteriophages functionally and ecologically is whether they are purely lytic (virulent) or temperate. Virulent phages can only be transmitted horizontally by infection, most commonly with the death of their hosts. Temperate phages can also be transmitted horizontally, but upon infection of susceptible bacteria, their genomes can be incorporated into that of their host’s as a prophage and be transmitted vertically in the course of cell division by their lysogenic hosts. From what we know from studies with the temperate phage Lambda and other temperate phages, in laboratory culture, lysogenic bacteria are protected from killing by the phage coded for by their prophage by immunity; where upon infecting lysogens, the free temperate phage coded by their prophage is lost. Why are lysogens not also resistant as well as immune to the phage coded by their prophage since immunity does not confer protection against virulent phages? To address this question, we used a mathematical model and performed experiments with temperate and virulent mutants of the phage Lambda in laboratory culture. Our models predict and experiments confirm that selection would favor the evolution of resistant and immune lysogens, particularly if the environment includes virulent phage that shares the same receptors as the temperate. To explore the validity and generality of this prediction, we examined 10 lysogenic Escherichia coli from natural populations. All 10 were capable of forming immune lysogens, but their original hosts were resistant to the phage coded by their prophage.
Abstract Citrobacter freundii is a worldwide emerging nosocomial pathogen with escalating incidence of multidrug resistance. Citrobacter freundii exists in natural environment, especially in health care settings and is difficult to eradicate. Phage therapy is considered as an alternative way of controlling bacterial infections and contaminations. In this study, we have described isolation and characterization of a virulent bacteriophage LK1 capable of specifically infecting Citrobacter freundii . A virulent bacteriophage LK1, specific for Citrobacter freundii was isolated from sewage water sample. TEM showed that phage Lk1 has an icosahedral head 70 nm in diameter and short tail of 17 nm, and can be classified as a member of the Podoviridae family. Restriction analysis indicated that phage LK1 was a dsDNA virus with an approximate genome size of 20–23 kb. Proteomic pattern generated by SDS PAGE using purified LK1 phage particles, revealed three major and six minor protein bands with molecular weight ranging from 25 to 80 kDa. Adsorption rate of LK1 relative to the host bacterium was also determined which showed significant improvement in adsorption with the addition of CaCl 2 . In a single step growth experiment, LK1 exhibited a latent period of 24 min and burst size of 801 particle/cell. Moreover, pH and thermal stability of phage LK1 demonstrated a pH range of 5.0–6.0 and phage viability decreased to 0% at 65 °C. When LK1 was used to infect six other clinically isolated pathogenic strains, it showed relatively narrow host range. LK1 was capable of eliciting efficient lysis of Citrobacter freundii , revealing its potential as a non‐toxic sanitizer for controlling Citrobacter freundii infection and contamination in both hospital and other public environments.
Abstract Background: In Pakistan, most patients with Hepatitis B and C have history of facial and armpit shaving from barbers. Objective: Evaluate the awareness and risk factors associated with barbers in transmission of Hepatitis B and C. Subjects and methods: A cross sectional survey was conducted in Rawalpindi and Islamabad, the twin capital cities of Pakistan between January and July 2009. Five hundred and eight barbershops were surveyed. Results: Out of 508 barber shops, 99.8% and 98.2% were washing their razor with water and water plus antiseptic solution, respectively, while 99.8% were using new blades. Only 39.6% knew that hepatitis B virus (HBV) and hepatitis C virus (HCV) were viral diseases, 26.6% knew that it can lead to cancer, 90.7% thought that hepatitis could be transferred by blade sharing, 47.8% knew that a vaccine for HBV was available, and 43.0% had education beyond the primary level. None of the barbers used a new or washed apron/towel on every customer. Conclusion: In Pakistan, a small number of barbers are shaving clients with an old style razor with a permanent blade. There is moderate awareness about the various modes of transmission of hepatitis among the barbers, and most of them don’t know about vaccination. A predominant number of them are considering interferon treatment as a vaccine for hepatitis B and C.
In experimental cultures, when bacteria are mixed with lytic (virulent) bacteriophage, bacterial cells resistant to the phage commonly emerge and become the dominant population of bacteria. Following the ascent of resistant mutants, the densities of bacteria in these simple communities become limited by resources rather than the phage. Despite the evolution of resistant hosts, upon which the phage cannot replicate, the lytic phage population is most commonly maintained in an apparently stable state with the resistant bacteria. Several mechanisms have been put forward to account for this result. Here we report the results of population dynamic/evolution experiments with a virulent mutant of phage Lambda, λVIR, and Escherichia coli in serial transfer cultures. We show that, following the ascent of λVIR-resistant bacteria, λVIR is maintained in the majority of cases in maltose-limited minimal media and in all cases in nutrient-rich broth. Using mathematical models and experiments, we show that the dominant mechanism responsible for maintenance of λVIR in these resource-limited populations dominated by resistant E. coli is a high rate of either phenotypic or genetic transition from resistance to susceptibility—a hitherto undemonstrated mechanism we term "leaky resistance." We discuss the implications of leaky resistance to our understanding of the conditions for the maintenance of phage in populations of bacteria—their "existence conditions."
Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.
We present evidence that phage resistance resulting from overproduction of exopolysaccharides, mucoidy, provides a general answer to the longstanding question of how lytic viruses are maintained in populations dominated by bacteria upon which they cannot replicate. In serial transfer culture, populations of mucoid Escherichia coli MG1655 that are resistant to lytic phages with different receptors, and thereby requiring independent mutations for surface resistance, are capable of maintaining these phages with little effect on their total density. Based on the results of our analysis of a mathematical model, we postulate that the maintenance of phage in populations dominated by mucoid cells can be attributed primarily to high rates of transition from the resistant mucoid states to susceptible non-mucoid states. Our tests with both population dynamic and single cell experiments as well as genomic analysis are consistent with this hypothesis. We discuss reasons for the generalized resistance of these mucoid E. coli, and the genetic and molecular mechanisms responsible for the high rate of transition from mucoid to sensitive states responsible for the maintenance of lytic phage in mucoid populations of E. coli.