PI3K-Akt signaling pathway plays a critical role in the regulation of cell proliferation,differentiation and apoptosis,and is closely related to the physiological function of cells and thus may cause certain diseases.The excessive activation of this pathway is found closely associated with the formation of drug resistance of tumors.Recent studies in vitro indicate that the combined chemotherapy drugs with PI3K-Akt signaling pathway inhibitors,can significantly enhance the efficiency of chemotherapy drug and lower the value of IC50.Therefore,PI3K-Akt signaling pathway has become an important target to inhibit tumor cell growth and reverse tumor drug resistance.
Key words:
Signal transduction; Neoplasms ; Drug tolerance ; Drug therapy
Abstract The outbreak of COVID-19 become enormous threat to human beings, showing unclear virus mutation during dissemination. We found, in our 788 confirmed COVID-19 patients, the decreased rate of severe/critical type, increased liver/kidney damage and prolonged period of nuclear acid positivity, when compared with Wuhan. To investigate underlining mechanisms, we isolated one strain of SARS-CoV-2 (ZJ01) in mild COVID-19 patient and found the existence of 35 specific gene mutation by gene alignment. Further phylogenetic analysis and RSCU heat map results suggested that ZJ01 may be a potential evolutionary branch of SARS-CoV-2. We classified 54 strains of viruses worldwide (C/T type) based on the base (C or T) at positions 8824 and 28247. ZJ01 has both T at those sites, becoming the only TT type currently identified in the world. The prediction of Furin cleavage site (FCS) and the sequence alignment of virus family indicated that FCS may be an important site of coronavirus evolution. ZJ01 had mutations near FCS (F1-2), which caused changes in the structure and electrostatic distribution of S protein surface, further affecting the binding capacity of Furin. Single cell sequencing and ACE2-Furin co-expression results confirmed that Furin level was higher in the whole body, especially in glands, liver, kidney and colon while FCS may help SARS-CoV-2 infect these organs. The evolutionary pattern of SARS-CoV-2 towards FCS formation may result in its clinical symptom becoming closer to HKU-1 and OC43 (the source of FCS sequence-PRRA) caused influenza, further showing potential in differentiating into mild COVID-19 subtypes.
Long non-coding RNAs (lncRNAs) are increasingly regarded as a key role in regulating diverse biological processes in various tissues and species. Although the cold responsive lncRNAs have been reported in plants, no data is available on screening and functional prediction of lncRNAs in cold acclimation in fish so far. Here we compared the expression profile of lncRNAs in cold acclimated zebrafish embryonic fibroblast cells (ZF4) cultured at 18°C for 30 days with that of cells cultured at 28°C as control by high-throughput sequencing. Totally 8,363 novel lncRNAs were identified. Including known and novel lncRNAs, there are 347 lncRNAs up-regulated and 342 lncRNAs down-regulated in cold acclimated cells. Among the differentially expressed lncRNAs, 74 and 61 were detected only in control cells or cold-acclimated cells, respectively. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses of adjacent genes to the differentially expressed lncRNAs showed that the enriched genes are involved in electron transport, cell adhesion, oxidation-reduction process, and so on. We also predicted the target genes of the differentially expressed lncRNAs by looking for interactions between lncRNAs and mRNAs, and constructed an interaction network. In summary, our genome-wide systematic identification and functional prediction of cold responsive lncRNAs in zebrafish cells suggests a crucial role of lincRNAs in cold acclimation in fish.
Abstract Clinical evidence supports the notion that T cell exhaustion and terminal differentiation pose challenges to the persistence and effectiveness of chimeric antigen receptor-T (CAR-T) cells. MEK1/2 inhibitors (MEKIs), widely used in cancer treatment due to their ability to inhibit aberrant MAPK signaling, have shown potential synergistic effects when combined with immunotherapy. However, the impact and mechanisms of MEKIs on CAR-T cells remain uncertain and controversial. To address this, we conducted a comprehensive investigation to determine whether MEKIs enhance or impair the efficacy of CAR-T cells. Our findings revealed that MEKIs attenuated CAR-T cell exhaustion and terminal differentiation induced by tonic signaling and antigen stimulation, thereby improving CAR-T cell efficacy against hematological and solid tumors. Remarkably, these effects were independent of the specific scFvs and costimulatory domains utilized in CARs. Mechanistically, analysis of bulk and single-cell transcriptional profiles demonstrates that the effect of MEK inhibition was related to diminish anabolic metabolism and downregulation of c-Fos and JunB. Additionally, the overexpression of c-Fos or JunB in CAR-T cells counteracted the effects of MEK inhibition. Furthermore, our Cut-and-Tag assay revealed that MEK inhibition downregulated the JunB-driven gene profiles associated with exhaustion, differentiation, anergy, glycolysis, and apoptosis. In summary, our research unveil the critical role of the MAPK-c-Fos-JunB axis in driving CAR-T cell exhaustion and terminal differentiation. These mechanistic insights significantly broaden the potential application of MEKIs to enhance the effectiveness of CAR-T therapy.
Adult hematopoietic stem cells (HSCs) homeostasis is critically important in maintaining lifelong hematopoiesis. However, how adult HSCs orchestrate its homeostasis remains not fully understood. Imprinted gene Dlk1 has been shown to play critical role in mouse embryonic hematopoiesis and in regulation of stem cells, but its physiological roles in adult HSCs are unknown.We performed gene expression analysis of Dlk1, and constructed conditional Dlk1 knockout (KO) mice by crossing Mx1 cre mice with Dlkflox/flox mice. Western blot and quantitative PCR were used to detect Dlk1 KO efficiency. Flow cytometry was performed to investigate the effects of Dlk1 KO on HSCs, progenitors and linage cells in primary mice. Competitive HSCs transplantation and secondary transplantation was used to examine the effects of Dlk1 KO on long-term hematopoietic repopulation potential of HSCs. RNA-Seq and cell metabolism assays was used to determine the underlying mechanisms.Dlk1 was highly expressed in adult mice long-term HSCs (LT-HSCs) relative to progenitors and mature lineage cells. Dlk1 KO in adult mice HSCs drove HSCs enter active cell cycle, and expanded phenotypical LT-HSCs, but undermined its long-term hematopoietic repopulation potential. Dlk1 KO resulted in an increase in HSCs' metabolic activity, including glucose uptake, ribosomal translation, mitochondrial metabolism and ROS production, which impaired HSCs function. Further, Dlk1 KO in adult mice HSCs attenuated Notch signaling, and re-activation of Notch signaling under Dlk1 KO decreased the mitochondrial activity and ROS production, and rescued the changes in frequency and absolute number of HSCs. Scavenging ROS by antioxidant N-acetylcysteine could inhibit mitochondrial metabolic activity, and rescue the changes in HSCs caused by Dlk1 KO.Our study showed that Dlk1 played an essential role in maintaining HSC homeostasis, which is realized by governing cell cycle and restricting mitochondrial metabolic activity.
<div>Abstract<p>Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematologic malignancy. In elderly patients, AML incidence is high and has a poor prognosis due to a lack of effective therapies. G protein–coupled receptors (GPCR) play integral roles in physiologic processes and human diseases. Particularly, one third of adhesion GPCRs, the second largest group of GPCRs, are highly expressed in hematopoietic stem and progenitor cells or lineage cells. Here, we investigate the role of adhesion GPCRs in AML and whether they could be harnessed as antileukemia targets. Systematic screening of the impact of adhesion GPCRs on AML functionality by bioinformatic and functional analyses revealed high expression of ADGRE2 in AML, particularly in leukemic stem cells, which is associated with poor patient outcomes. Silencing ADGRE2 not only exerts antileukemic effects in AML cell lines and cells derived from patients with AML <i>in vitro,</i> but also delays AML progression in xenograft models <i>in vivo</i>. Mechanistically, ADGRE2 activates phospholipase Cβ/protein kinase C/MEK/ERK signaling to enhance the expression of AP1 and transcriptionally drive the expression of DUSP1, a protein phosphatase. DUSP1 dephosphorylates Ser16 in the J-domain of the co-chaperone DNAJB1, which facilitates the DNAJB1–HSP70 interaction and maintenance of proteostasis in AML. Finally, combined inhibition of MEK, AP1, and DUSP1 exhibits robust therapeutic efficacy in AML xenograft mouse models. Collectively, this study deciphers the roles and mechanisms of ADGRE2 in AML and provides a promising therapeutic strategy for treating AML.</p><p><b>Significance:</b> Increased expression of the adhesion GPCR member ADGRE2 in AML supports leukemia stem cell self-renewal and leukemogenesis by modulating proteostasis via an MEK/AP1/DUSP1 axis, which can be targeted to suppress AML progression.</p></div>