Pediatric-type follicular lymphoma (PTFL) is a rare and recently recognized subtype of nodal follicular B-cell lymphoma. While significant recent progress has been made in understanding the morphologic, immunophenotypic, and molecular findings, there are only rare case reports describing the cytomorphologic features of PTFL.Four cases of PTFL initially evaluated on fine needle aspiration (FNA) biopsy were retrieved from our institutions' databases. The cytologic and subsequent surgical excision specimens were compared in terms of cytology, histology, immunophenotype, and molecular findings.A constellation of cytologic features for PTFL are able to distinguish it from other cytomorphologic entities in the differential including: 1) the presence of large blastoid cells with fine chromatin and irregular nuclear membranes, 2) small/intermediate-sized lymphocytes with subtle nuclear membrane irregularities, 3) near complete absence of cytoplasmic vacuoles in lymphoid cells, 4) tingible body macrophages, 5) mitotic figures, 6) absence of a diffuse large cell component, 7) and no significant plasma cell population.We present four cases of PTFL initially evaluated on FNA biopsy and define the cytomorphologic features of PTFL. FNA biopsy is presented as a practical tool for initial evaluation of this rare entity as part of a multimodal diagnostic approach, for which increased awareness among cytopathologists can ensure the appropriate triage of specimen studies necessary for the diagnosis. Additionally, we comprehensively review the current literature on PTFL and discuss the differential diagnosis on cytology, including potential pitfalls.
Classic Hodgkin lymphoma (CHL) patients may infrequently present with a prior or recurrent disease with discordant histology resembling non-Hodgkin lymphomas. These include primary mediastinal large B-cell lymphoma (PMBL), diffuse large B-cell lymphoma (DLBCL), or mediastinal gray-zone lymphoma (MGZL). Such patients are often refractory to standard therapy and their diagnosis is hampered by significant morphologic and immunophenotypic overlap and insufficient molecular data. Among 509 CHL patients seen at an academic medical center, 6 patients had a prior or subsequent diagnosis different from CHL. Paired tissue samples were evaluated by targeted mutational analysis using a 164-gene panel. Our findings show multiple shared variants indicative of a clonal relationship between the CHL and the PMBL, DLBCL, or MGZL diagnoses. Most frequent mutated genes included TNFAIP3 (4 of 6, 66.7%), STAT6 (3 or 6, 50%), ARID1A (3 of 6, 50%), and XPO1 (3 of 5, 60%). Three patients showed the same oncogenic variant within the XPO1 gene (E571K), and mutations in TNFAIP3 and B2M were observed in 2 of the 5 patients with shared variants. In addition, differences in the mutation profile between the lymphoma pairs were also observed, which could represent clonal evolution. Mutational profiling could be of benefit in patients with recurrent/refractory disease with discordant histology, where the clonal relationship could be helpful to inform and guide therapeutic decisions. These findings provide further evidence of a true biological continuum surrounding CHL, PMBL, DLBCL, and MGZL and shed light on underlying genetic events and their clinical impact.
Haemophagocytic lymphohistiocytosis (HLH) is a complex, often under-recognised hyperinflammatory immune dysregulation syndrome arising in a diverse range of clinical scenarios and conditions. The accurate and timely diagnosis of HLH is crucial for patient survival, and usually requires a high level of clinical suspicion. The histological corollary to clinical HLH-haemophagocytosis-is neither necessary nor sufficient for the diagnosis of HLH, as it may be seen in a variety of reactive conditions and may be absent in true HLH. Nevertheless, the finding of haemophagocytosis in specific clinical situations should prompt consideration of HLH and further testing to exclude the condition. Although haemophagocytosis is traditionally described in bone marrow, identification of it in other tissues, including lymphoid, splenic, liver or neural tissue, can contribute importantly to the overall recognition of HLH. In this review we discuss the underlying pathophysiology and aetiologies of HLH, and the morphological aspects of haemophagocytosis and its associated histological findings in different tissues, and give a brief overview of diagnostic criteria and clinical evaluation.
Castleman disease (CD) is a rare lymphoproliferative disorder with distinct clinical subtypes. However, our understanding of the underlying pathogenesis of particular subtypes of CD remains unclear. While the characteristic morphologic changes within UCD, including occasional cases of overgrowth of spindled stromal and follicular dendritic cells have been described, the nature and origin of these spindle cells remain elusive. Few reports have suggested that underlying stromal cells in UCD are clonally neoplastic and may be of fibroblastic reticular cell (FRC) or follicular dendritic cell (FDC) origins given their close clonal relationship. Although certain histomorphologic features may aid diagnosis, there are no specific biomarkers that can differentiate a reactive process mimicking UCD from true UCD. Hence, we describe an index case with morphology consistent with the hyaline vascular subtype of UCD with concomitant atypical smooth muscle actin (SMA)-positive stromal spindle cell proliferation containing a recurrent PDGFRB N666S mutation and upregulation of p53 expression. Further analysis of 21 additional cases of UCD identified increased p53 expression by digital image analysis and SMA positive stromal cells predominantly within the paracortical and intrafollicular areas further strengthening the hypothesis of the stromal cellular derivation and origins of UCD.
Histiocytic sarcoma (HS) is a rare malignant proliferation of mature histiocytic cells accounting for less than 1% of all lympho-hematologic malignancies with a median age of 55 years at presentation and poor prognosis. HS generally presents in the lymph nodes, but the gastrointestinal tract is the most common extra-nodal site. Physical findings usually include lymphadenopathy, splenomegaly, hepatosplenomegaly or skin lesions and usually presents as a solitary mass. Here we present a case of a 76-year-old woman with past medical history significant for coronary artery disease who was admitted for symptomatic upper gastrointestinal bleeding. Endoscopy revealed multiple gastric polyps, and the patient subsequently underwent total gastrectomy for persistent bleeding. On gross examination, there were multiple, pedunculated polyps as well as an underlying thickened wall predominantly located in the fundus with sparing of the lesser curvature. Sectioning of the masses revealed uniform, fleshy cut surfaces with intact muscularis propria. Histological examination of the specimen showed mixed epithelioid and spindled cell morphology with increased mitotic rate and necrosis. Cytologically, the nuclei were uniformly enlarged with pale eosinophilic cytoplasm and prominent nucleolus. On immunohistochemistry, the tumor cells showed strong reactivity with histiocytic antigens PU.1/ CD163 and weakly reactive for CD68. In addition, vimentin was positive, but markers of epithelial, muscular, neural, lymphocytic, and melanocytic origin were all negative. Ki-67 showed a proliferative index of 30%. Follow-up of the patient shows persistent bleeding with local recurrence at the surgical site and metastasis to the left atrium. This case represents an unusual lesion in the differential diagnosis of gastric epithelioid and spindled neoplasms. Due to its aggressive nature, early recognition of this entity is required for appropriate management.
Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), known to be the causative agent of COVID‐19, has led to a worldwide pandemic. At presentation, individual clinical laboratory blood values, such as lymphocyte counts or C‐reactive protein (CRP) levels, may be abnormal and associated with disease severity. However, combinatorial interpretation of these laboratory blood values, in the context of COVID‐19, remains a challenge. Methods To assess the significance of multiple laboratory blood values in patients with SARS‐CoV‐2 and develop a COVID‐19 predictive equation, we conducted a literature search using PubMed to seek articles that included defined laboratory data points along with clinical disease progression. We identified 9846 papers, selecting primary studies with at least 20 patients for univariate analysis to identify clinical variables predicting nonsevere and severe COVID‐19 cases. Multiple regression analysis was performed on a training set of patient studies to generate severity predictor equations, and subsequently tested on a validation cohort of 151 patients who had a median duration of observation of 14 days. Results Two COVID‐19 predictive equations were generated: one using four variables (CRP, D‐dimer levels, lymphocyte count, and neutrophil count), and another using three variables (CRP, lymphocyte count, and neutrophil count). In adult and pediatric populations, the predictive equations exhibited high specificity, sensitivity, positive predictive values, and negative predictive values. Conclusion Using the generated equations, the outcomes of COVID‐19 patients can be predicted using commonly obtained clinical laboratory data. These predictive equations may inform future studies evaluating the long‐term follow‐up of COVID‐19 patients.
Evidence of T-cell clonality is often critical in supporting the diagnosis of a T-cell lymphoma.To retrospectively explore the significance of copy number losses at the 14q11.2 T-cell receptor α locus in relation to the presence of a T-cell neoplasm and proportion of T cells by targeted next-generation sequencing.Targeted next-generation sequencing data from 139 tissue biopsies, including T-cell lymphomas, B-cell lymphomas, classic Hodgkin lymphomas, nonhematopoietic malignancies, and normal samples, were reviewed for copy number losses involving the T-cell receptor α gene segments at chr14q11.2.We found that biallelic or homozygous deletion of 14q11.2 was found in most (28 of 33, 84.8%) T-cell lymphomas. The magnitude of 14q11.2 loss showed a statistically significant correlation with the proportion of T cells in lymphoma tissue samples. Copy number losses could also be detected in other lymphomas with high numbers of T cells (8 of 32, 25% of B-cell lymphomas, 4 of 4 classical Hodgkin lymphomas), though biallelic/homozygous deletion of 14q11.2 was not significantly observed outside of T-cell lymphomas. Most nonhematopoietic neoplasms and normal tissues (59 of 64, 92.2%) showed no significant copy number losses involving the T-cell receptor α locus at chr14q11.2.Analysis of copy number losses at the T-cell receptor α locus chr14q11.2 with targeted next-generation sequencing can potentially be used to estimate the proportion of T cells and detect T-cell neoplasms.
B-cell and T-cell lymphomas and leukemias often have distinct genetic mutations that are diagnostically defining or prognostically significant. A subset of these mutations consists of specific point mutations, which can be evaluated using genetic sequencing approaches or point mutation specific antibodies. Here, we describe genes harboring point mutations relevant to B-cell and T-cell malignancies and discuss the current availability of these targeted point mutation specific antibodies. We also evaluate the possibility of generating novel antibodies against known point mutations by computationally assessing for chemical and structural features as well as epitope antigenicity of these targets. Our results not only summarize several genetic mutations and identify existing point mutation specific antibodies relevant to hematologic malignancies, but also reveal potential underdeveloped targets which merit further study.