We present a metamaterial-based random polarization control plate to produce incoherent laser irradiation by exploiting the ability of metamaterial in the local polarization manipulation of a beam upon transmission via tuning its local geometry. As a proof of principle, we exemplify this idea numerically in a simple optical system using a typical L-shaped plasmonic metamaterial with locally varying geometry, from which the desired polarization distribution can be obtained. The calculating results illustrate that this scheme can effectively suppress the speckle contrast and increase irradiation uniformity, which has potential to satisfy the increasing requirements for incoherent laser irradiation.
In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. We find that, unlike the transverse spin-dependent splitting, the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in the magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in the photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of the photonic SHE.
Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.
Abstract Photonic spin Hall effect (PSHE) in chiral PT-symmetric systems exhibits many exotic features, but the underlying physical mechanism has not been well elucidated. Here, through rigorous calculations based on full-wave theory, we reveal the physical mechanism of the exotic PSHE and identify a chirality-enabled topological phase transition. When circularly polarized light is incident on a chiral PT-symmetric system, the transmitted beam contains two components: a spin-flipped abnormal mode that acquires a geometric phase (exhibiting a vortex or a spin-Hall shift), and a spin-maintained normal mode that does not exhibit such a phase. If the phase difference between the cross-polarized Fresnel coefficients cannot be ignored, it results in a chirality-enabled phase and intensity distribution in the abnormal mode, which induces an exotic PSHE. Consequently, as the incident angle increases, a chirality-induced topological phase transition occurs, namely the transition from the vortex generation to the exotic PSHE. Finally, we confirm that the asymmetric and periodic PSHE in the chiral slab is also related to the phase difference between the cross-polarized Fresnel coefficients. These concepts and findings also provide an opportunity for unifying the phenomena of topological phase transitions in various spin-orbit photonic systems.
We examine the Goos-Hänchen (GH) effect for a Gaussian beam impinging on the surface of silicene whose topological phase transitions can be modulated by external electric field and/or irradiating circular polarized light. It is shown that both the spatial and angular shifts in GH effect present a sharp jump due to the topological phase transitions. The transitional GH effect can be attributed to transitional optical conductivity, which relates to Berry curvature and Chern numbers. These results can be extensively extended to other two-dimensional atomic crystals in graphene family. We believe that the transitional GH effect may offer a possible way to determine the Berry curvature, Chern numbers, and topological phase transition by a direct optical measurement.
A magneto-optical trap for He(2{sup 3}S) metastable atoms has been constructed, utilizing superconducting magnetic gradient coils and a Ti:Sapphire ring laser for pumping the helium 2{sup 3}S-2{sup 3}P transition. The He(2{sup 3}S) atoms are produced by a weak rf discharge in helium gas at a temperature of 1.4K. The discharge products flow through a small orifice into the trap cell, where a fraction of the He(2{sup 3}S) atoms are trapped and ground state helium atoms are rapidly cryopumped by zeolite pellets that cover most of the cell bottom. Preliminary experiments suggest that {approximately}10{sup 6} atoms are trapped in a small volume at {approximately}1 mK, with a trap lifetime of 10-100 msec limited by resonantly-enhanced He(2{sup 3}S)-He(2{sup 3}P) Penning reactions. Ultimately, it is estimated that a substantial number of atoms can be held at ultra-low temperature in near-perfect vacuum, in a dc magnetic trap. Measurements of decay times of the trapped atoms should yield rate coefficients in the quantum regime for He(2{sup 3}S)-He(2{sup 3}P) and He(2{sup 3}S)-He(2{sup 3}S) Penning reactions, and perhaps the He(2{sup 3}S) radiative lifetime.
Abstract We systematically explore the origin and evolution of the exceptional points (EP) when a light beam is scattered by a PT-symmetric system using a scattering matrix approach and a full-wave theory. It is demonstrated that the PT-symmetric system switches between symmetry and symmetry-breaking phases at the EPs, giving rise to singular features in the Fresnel coefficients and causing the spin-Hall effect (SHE) near the EPs to exhibit anomalous features such as significantly enhanced transverse spin-Hall shifts and additional in-plane spin-Hall shifts. This exotic SHE can be explained by the significant beam intensity distortion caused by the destructive interference between the spin-maintained normal modes and the spin-reversed abnormal modes in the scattered light. This phenomenon can further be understood in terms of vortex mode decomposition, wherein it can be interpreted as the competition and superposition of three vortex modes with topological charges of −1, 0, and 1, respectively. These findings elucidate the mechanism of the unusual SHE around the EPs and offer potential avenues for EP-based sensing and structured light manipulation.