Chemical degradation and mechanical degradation are the major challenges for heavy-duty vehicle fuel cell commercialization. Perfluorinated sulfonic acid is the benchmark material that has high proton conductivity and robust mechanical properties. However, chemical degradation can occur through radical formation during the fuel cell operation. Chemical degradation can also have a synergetic effect with mechanical degradation. Recent studies have used cerium and manganese additives to suppress the radical formation or chemical degradation caused by radicals. The limitation of the metal and metal oxide additives was the migration and agglomeration of the additives. Both migration and clustering can lead to changes in membrane morphology, resulting in a loss in proton conductivity. Our group has previously reported that immobilization of heteropoly acid to a fluoroelastomer can be used to both enhance proton conductivity and chemical degradation. The durability test has shown that the chemical durability was significantly enhanced, but the mechanical durability remained the challenge. In this study, we hypothesized that when a heteropoly acid can be chemically bound to the perfluorinated polymer and cast on a composite membrane with expanded polytetrafluoroethylene (e-PTFE) will enhance the chemical and mechanical durability without migration. Proton conductivity was measured using impedance spectroscopy. The structure-property relationship was studied using multi-scale morphology analysis methods such as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and small-angle x-ray scattering (SAXS). The chemical degradation will be tested under the highly accelerated standard test (HAST) condition, a more severe fuel cell operation condition than the accelerated standard condition (AST). The mechanical durability of the composite membrane will also be tested on the HAST condition with humidity cycling.
A new kind of beam string structure, named RPC-BSS, which consists of reactive powder concrete upper chord and cables, is presented in this paper. The material of RPC provides superior mechanical properties and high durability, and the cable provides huge tensile force. The structural concept is based on the combination of the advantages of RPC and beam string structural technology. Furthermore, static and dynamic properties of the structure are discussed, and the influence of different factors are taken into consideration in the analysis. The analytical results show that the new structure is of longer span, less weight, better aseismic characteristics and higher durability than conventional beam string structure.
Commercial proton exchange membrane heavy-duty fuel cell vehicles will require a five-fold increase in durability compared to current state-of-the art light-duty fuel cell vehicles. We describe a new composite membrane that incorporates silicotungstic heteroply acid (HPA), α -K 8 SiW 11 O 40 ▪13H 2 O, a radical decomposition catalyst and when acid-exchanged can potentially conduct protons. The HPA was covalently bound to a terpolymer of tetrafluoroethylene, vinylidene fluoride, and sulfonyl fluoride containing monomer (1,1,2,2,3,3,4,4-octafluoro-4-((1,2,2-trifluorovinyl)oxy)butane-1-sulfonyl fluoride) by dehydrofluorination followed by addition of diethyl (4-hydroxyphenyl) phosphonate, giving a perfluorosulfonic acid-vinylidene fluoride-heteropoly acid (PFSA-VDF-HPA). A composite membrane was fabricated using a blend of the PFSA-VDF-HPA and the 800EW 3M perfluoro sulfonic acid polymer. The bottom liner-side of the membrane tended to have a higher proportion of HPA moieties compared to the air-side as gravity caused the higher mass density PFSA-VDF-HPA to settle. The composite membrane was shown to have less swelling, more hydrophobic properties, and higher crystallinity than the pure PFSA membrane. The proton conductivity of the membrane was 0.130 ± 0.03 S cm −1 at 80 °C and 95% RH. Impressively, when the membrane with HPA-rich side was facing the anode, the membrane survived more than 800 h under accelerated stress test conditions of open-circuit voltage, 90 °C and 30% RH.
Proton exchange membranes (PEMs) are considered as the most promising material for fuel cell automobile applications due to their high proton conductivity and power density. The radical attacks with peroxide formation cause lower durability, which is a major challenge to further commercialize fuel cell vehicles. Cerium and manganese cations and oxides have been implemented as radical scavenging agents to overcome the challenge from radical attacks. However, the additives tend to not stay on the initial location but move during the operation due to migration and diffusion. The migration results in cluster formation and eventually the additives may dissolve and leave the membrane system. Our previous work modifying commercial fluroelastomers with chemically bonded polyoxometalate resulted in a membrane with radical scavenging properties while inhibiting additive clustering. Advancement in PEM durability with additives has implications not only for the light-duty fuel cell vehicles but also for medium and heavy-duty vehicles applications, which would aid the widespread of commercialization of fuel cell vehicles. This work focuses on characterizing the blended perfluorinated sulfonic acid (PFSA) ionomer membrane with the chemically bound radical scavenger to enhance the durability of the membrane. Proton conductivity of the membrane was characterized under controlled relative humidity and temperature with electrochemical impedance spectroscopy (EIS). Ionic Exchange capacity of two or more proton conductive sites was measured using titration method. Correlation between water uptake and membrane properties is discussed and measuring using dynamic vapor sorption (DVS). Thermal stability was investigated through thermalgravimetric analysis (TGA).