Recent studies have indicated that using statins to inhibit the mevalonate pathway induces mutant p53 degradation by impairing the interaction of mutant p53 with DnaJ subfamily A member 1 (DNAJA1). However, the role of the C-terminus of DNAJA1 with a CAAX box for farnesylation in the binding, folding, and translocation of client proteins such as mutant p53 is not known. In the present study, we used a genetically engineered mouse model of pancreatic carcinoma and showed that atorvastatin significantly increased animal survival and inhibited pancreatic carcinogenesis. There was a dramatic decrease in mutant p53 protein accumulation in the pancreatic acini, pancreas intraepithelial neoplasia lesions, and adenocarcinoma. Supplementation with farnesyl pyrophosphate, a substrate for protein farnesylation, rescued atorvastatin-induced mutant p53 degradation in pancreatic cancer cells. Tipifarnib, a farnesyltransferase inhibitor, mirrored atorvastatin's effects on mutant p53, degraded mutant p53 in a dose-dependent manner, and converted farnesylated DNAJA1 into unfarnesylated DNAJA1. Farnesyltransferase gene knockdown also significantly promoted mutant p53 degradation. Coimmunoprecipitation either by an anti-DNAJA1 or p53 antibody confirmed the direct interaction of mutant p53 and DNAJA1 and higher doses of atorvastatin treatments converted more farnesylated DNAJA1 into unfarnesylated DNAJA1 with much less mutant p53 pulled down by DNAJA1. Strikingly, C394S mutant DNAJA1, in which the cysteine of the CAAX box was mutated to serine, was no longer able to be farnesylated and lost the ability to maintain mutant p53 stabilization. Our results show that farnesylated DNAJA1 is a crucial chaperone in maintaining mutant p53 stabilization and targeting farnesylated DNAJA1 by atorvastatin will be critical for inhibiting p53 mutant cancer.
Abstract MicroRNAs are released from cells in extracellular vesicles (EVs), representing an essential mode of cell-cell communication (CCC) via an inhibitory effect on gene expression. The advent of single-cell RNA-sequencing (scRNA-seq) technologies has ushered in an era of elucidating EV-derived miRNA-mediated CCC. However, the lack of computational methods to infer such CCC poses an outstanding challenge. Herein, we present miRTalk ( https://github.com/multitalk/miRTalk ), a pioneering framework for inferring EV-derived miRNA-mediated CCC with a probabilistic model and a curated database, miRTalkDB, which includes EV-derived miRNA-target associations. The benchmarking against simulated and real-world datasets demonstrated the remarkable accuracy and robustness of miRTalk. Subsequently, we employed miRTalk to uncover the in-depth CCC mechanisms underlying three disease scenarios. In summary, miRTalk represents the first approach for inferring EV-derived miRNA-mediated CCC with scRNA-seq data, providing invaluable insights into the CCC dynamics underpinning biological processes.
Previous studies have shown that curcumin derivatives can improve the fatty degeneration of liver tissue that occurs in nonalcoholic fatty liver disease (NAFLD). However, the specific mechanism for that improvement remains unclear. We examined whether the curcumin derivative galangin could reduce the fatty degeneration of liver tissue in mice with NAFLD by inducing autophagy, from the perspective of both prevention and treatment.C57BL/6J mice were randomly assigned to a prevention group (given galangin and a HFD simultaneously) or a treatment group (given galangin after being fed an HFD). The prevention group was treated with galangin (100 mg/kg/d) or an equal volume of normal saline (NS) while being fed an HFD. Some mice were treated with an autophagy inhibitor (3-methyladenine, 3-MA; 30 mg/kg/biwk, i.p.) while being fed an HFD and galangin. HepG2 cells were cultured in DMEM medium containing both free fatty acids and galangin.Galangin was found to reduce the fatty degeneration of liver tissue induced by eating an HFD at both the prevention and treatment levels, and that effect might be related to an enhancement of hepatocyte autophagy. Inhibition of autophagy by 3-MA blocked the protective effect of galangin on hepatic steatosis. At the cellular level, galangin reduced lipid accumulation and enhanced the level of hepatocyte autophagy.In vitro and in vivo studies showed that galangin cannot only improve pre-existing hepatic steatosis but also prevent the development of stenosis by promoting hepatocyte autophagy.
Tea is one of the most popular beverages consumed in the world. Curcumin, the major yellow pigment in turmeric, is used widely as a spice and food-coloring agent. In this study, we studied the effects of tea and curcumin on 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters. DMBA solution (0.5% in mineral oil, 0.1 ml) was applied topically to the left cheek pouch of male Syrian golden hamsters 3 times/week for 6 weeks. Two days after the last treatment of DMBA, the animals received green tea (6 mg tea solids/ml) as drinking fluid, or 10 mmol curcumin applied topically 3 times/week, or the combination of green tea and curcumin treatment, or no treatment for 18 weeks. The combination of tea and curcumin significantly decreased the oral visible tumor incidence from 92.3% (24/26) to 69.2% (18/26) and the squamous cell carcinoma (SCC) incidence from 76.9% (20/26) to 42.3% (11/26). The combination of tea and curcumin also decreased the number of visible tumors and the tumor volume by 52.4 and 69.8%, as well as the numbers of SCC, dysplasic lesions and papillomas by 62.0, 37.5 and 48.7%, respectively. Green tea or curcumin treatment decreased the number of visible tumors by 35.1 or 39.6%, the tumor volume by 41.6 or 61.3% and the number of SCC by 53.3 or 51.3%, respectively. Green tea also decreased the number of dysplasic lesions. Curcumin also significantly decreased the SCC incidence. Tea and curcumin, singly or in combination, decreased the proliferation index in hyperplasia, dysplasia and papillomas. Only the combination treatment decreased the proliferation index in SCC. Tea alone and in combination with curcumin significantly increased the apoptotic index in dysplasia and SCC. Curcumin, alone and in combination with tea, significantly inhibited the angiogenesis in papilloma and SCC. The results suggested that green tea and curcumin had inhibitory effects against oral carcinogenesis at the post-initiation stage and such inhibition may be related to the suppression of cell proliferation, induction of apoptosis and inhibition of angiogenesis.
Chronic inflammation is an important factor contributing to human carcinoma, and non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to have a preventive effect in the development of various types of carcinoma. However, NSAIDs also have adverse side effects including increased cardiovascular events, making them less than ideal for routine chemoprevention. Soluble epoxide hydrolase (sEH) is an enzyme that converts endogenous anti-inflammatory compounds, the epoxyeicosatrienoic acids (EETs), to the less anti-inflammatory dihydroxyeicosatrienoic acids (DHETs). Inhibition of sEH, by a highly selective and potent sEH inhibitor (sEHI), increases EETs leading to decreased inflammation. In our studies, administration of a sEHI in mouse colitis models led to decreased ulcer incidence and number of ulcers compared to controls, with no adverse side effects seen. In human tissue, sEH showed an increase in expression, as seen immunohistochemically, in ulcerative colitis (UC), UC-induced dysplasia, and UC-induced carcinoma. Thus, inhibition of sEH may be a novel biomarker and potential therapeutic target in inflammation and inflammation-induced carcinoma.