Breast cancer is a leading cause of cancer death among women, and the failure of normal apoptosis has been proved in the development of breast cancer. The phytoestrogen, calycosin, is extracted from Chinese medical herb Radix astragali. We recently reported that calycosin successfully stimulated proliferation of ER-positive MCF-7 human breast cancer cells at low concentration. In the present study, we assessed the proapoptotic function of calycosin in MCF-7 cells at high concentration in vitro, as well as the possible mechanism of its effect. MCF-7 cells were treated with different concentrations of calycosin, and then detected by MTT assay for cellular viability, Hoechst assay, and flow cytometry for apoptosis. RASD1 is identified as a Ras-family member and a regulator in MAPK-mediated cascade leading to cell proliferation or apoptosis. To provide insight into the functions of RASD1 signaling pathway in calycosin-induced apoptosis, the expression of Bcl-2, Bax, and RASD1 in calycosin-treated cells were determined by Western blot assay. The results showed that high concentrations of calycosin significantly suppressed the proliferation of MCF-7 cells and promoted cell apoptosis. Moreover, compared with control group, the expression of Bcl-2 decreased with calycosin in MCF-7 cells, while Bax increased, which was significantly correlated with elevated expression of RASD1. Together, we present evidence that at relatively high concentration calycosin triggered cell apoptosis through the mitochondrial apoptotic pathway by upregulating RASD1. And for the first time, this study revealed that calycosin may have potential as a therapeutic agent for the treatment of breast cancer.
Formononetin is one of the main active components of red clover plants, and considered as a phytoestrogen. Its pharmacological effects in vivo may be either estrogenic or anti-estrogenic, mainly depending upon the estrogen levels. Our recent studies suggested that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. In the present study, we further investigated the molecular mechanisms involved in the induced apoptosis effect of formononetin on breast cancer cells. Our results suggested that formononetin inhibited the proliferation of ER-positive MCF-7 cells and T47D cells. In contrast, formononetin could not inhibit the cell of growth of ER-negative breast cancer cells such as MDA-MB-435 S cells. We further found that formononetin activated MAPK signaling pathway in a dose-dependent manner, which resulted in the increased ratio of Bax/Bcl-2, and induced apoptosis on MCF-7 cells. However, when MCF-7 cells were pretreated with p38MAPK inhibitor SB203580 before formononetin, apoptosis induced by formononetin was significantly attenuated. Thus, we conclude that the induced apoptosis effect of formononetin on human breast cancer cells were related to Ras-p38MAPK pathway. Considering that red clover plants are widely used clinically, our results provide the foundation for future development of formononetin for treatment of ER-positive breast cancer.
Matrine, a main active extract from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines, such as malignant melanoma, breast cancer, and lung cancer. However, it is currently unclear whether matrine could also elicit an inhibitory effect on growth of nasopharyngeal carcinoma (NPC), let alone the possible molecular mechanisms. Therefore, in a previous study, we investigated matrine-induced proliferation inhibition and apoptosis in NPC cells. It was shown that proliferation of human NPC cells (CNE1 and CNE2) was significantly diminished by matrine in a dose- and time-dependent manner, and apoptosis was induced in both 2 NPC cells, particularly in CNE2 cells. Moreover, the increased apoptosis rate in matrine-treated CNE2 cells confirmed the proapoptotic activity of matrine. We further found that matrine treatment dose- and time-dependently reduced the levels of vascular endothelial growth factor-A (VEGF-A), and inactivated extracellular signal-regulated kinase1/2 (ERK1/2), followed by increased expression of downstream target caspase-3. Overall, we conclude that matrine could induce apoptosis of human NPC cells via VEGF-A/ERK1/2 pathway, which supports the potential use of matrine in clinically treating NPC.
Formononetin is a main active component of red clover plants (Trifolium pratense L.), and is considered as a phytoestrogen. Our previous studies demonstrated that formononetin caused cell cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. In the present study, we investigated the molecular mechanisms involved in the effect of formononetin on prostate cancer cells. Our results suggested that higher concentrations of formononetin inhibited the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells. We further found that formononetin inactivated extracellular signal-regulated kinase1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner, which resulted in increased the expression levels of BCL2-associated X (Bax) mRNA and protein, and induced apoptosis in LNCaP cells. Thus, we concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, our results provided the foundation for future development of different concentrations formononetin for treatment of prostate cancer.