Osteoporosis (OP) is a systemic bone disease characterized by decreased bone mass, destruction of the bone tissue microstructure, increased bone brittleness and an increased risk of fracture. OP has a high incidence rate and long disease course and is associated with serious complications. Yigu decoction (YGD) is a compound prescription in traditional Chinese medicine that is used to treat OP. However, its mechanism in OP is not clear. This study used a tandem mass tag (TMT)quantitative proteomics method to explore the potential bone-protective mechanism of YGD in an osteoporotic rat model.A rat model of OP was established by ovariectomy. Eighteen 12-week-old specific-pathogen-free female Wistar rats weighing 220 ± 10 g were selected. The eighteen rats were randomly divided into 3 groups (n = 6 in each group): the normal, model and YGD groups. The right femurs from each group were subjected to quantitative biological analysis. TMT quantitative proteomics was used to analyze the proteins extracted from the bone tissue of rats in the model and YGD groups, and the differentially expressed proteins after intervention with YGD were identified as biologically relevant proteins of interest. Functional annotation correlation analysis was also performed to explore the biological function and mechanism of YGD.Compared with the model group, the YGD group showed significant upregulation of 26 proteins (FC > 1.2, P < 0.05) and significant downregulation of 39 proteins (FC < 0.833, P < 0.05). Four important targets involved in OP and 5 important signaling pathways involved in bone metabolism were identified.YGD can significantly increase the bone mineral density (BMD) of osteoporotic rats and may play a therapeutic role by regulating target proteins involved in multiple signaling pathways. Therefore, these results improve the understanding of the OP mechanism and provide an experimental basis for the clinical application of YGD in OP treatment.
Abstract Aqueous Zn−ion batteries (AZIBs) promise appealing advantages including safety, affordability, and high volumetric energy density. However, rampant parasitic reactions and dendrite growth result in inadequate Zn reversibility. Here, a biocompatible additive, L‐asparagine (Asp), in a low‐cost aqueous electrolyte, is introduced to address these concerns. Combining substantive verification tests and theoretical calculations, it is demonstrated that an Asp‐containing ZnSO 4 electrolyte can create a robust nanostructured solid‐electrolyte interface (SEI) by simultaneously modulating the Zn 2+ solvation structure and optimizing the metal‐molecule interface, which enables dense Zn deposition. The optimized electrolyte supports excellent Zn reversibility by achieving dendrite‐free Zn plating/stripping over 240 h at a high Zn utilization of 85.5% in the symmetrical cell and an average 99.6% Coulombic efficiency for over 1600 cycles in the asymmetrical cell. Adequate full‐cell performance is demonstrated with a poly(3,4‐ethylenedioxythiophene) intercalated vanadium oxide (PEDOT‐V 2 O 5 ) cathode, which delivers a high areal capacity of 4.62 mAh cm −2 and holds 84.4% capacity retention over 200 cycles under practical conditions with an ultrathin Zn anode (20 µm) and a low negative/positive capacity ratio (≈2.4). This electrolyte engineering strategy provides new insights into regulating the anode/electrolyte interfacial chemistries toward high‐performance AZIBs.
Yigu decoction (YGD) is a traditional Chinese medicine prescription for the treatment of osteoporosis, although many clinical studies have confirmed its anti-OP effect, but the specific mechanism is still not completely clear.
ABSTRACT The defect structures of the orthorhombical and tetragonal Cu 2+ centers in Cu 1− x H x Zr 2 (PO 4 ) 3 are theoretically studied by analyzing their experimental electron paramagnetic resonance (EPR) parameters, based on the perturbation formulas of these parameters for a 3d 9 ion in orthorhombically and tetragonally elongated octahedra, respectively. The above centers are attributed to the Cu 2+ ions locating at M(1) site, and the crystal field parameters (CFPs) are quantitatively determined from the superposition model and the local structures of the Cu 2+ sites. Based on the calculation, the parallel Cu‐O bonds may undergo the relative elongations Δ Z O (≈ 0.113 Å) and Δ Z T (≈ 0.102 Å) for the orthorhombical and tetragonal Cu 2+ centers in Cu 1− x H x Zr 2 (PO 4 ) 3 along z‐ axis, respectively. Meanwhile, the planar Cu‐O bonds are found to experience the relative variation δ r (≈ 0.056 Å) along the x ‐ and y ‐axes for the orthorhombical Cu 2+ center because of the Jahn–Teller (JT) effect. The theoretical EPR parameters based on the above local structures agree well with the observed values.
Abstract Germanium selenide (GeSe) and antimony sulfide (Sb 2 S 3 ) both are technological intriguing semiconductor material for green and economical photovoltaic devices. In this study, GeSe and Sb 2 S 3 have been utilized as the absorber layer and hole transport layer, respectively, to constructed a heterojunction thin film solar cell consisting of FTO/TiO 2 /GeSe/Sb 2 S 3 /Metal. The GeSe and Sb 2 S 3 are binary compounds and can adopt the same film deposition method, for instance, thermal evaporation, which is expected to improve process compatibility and to reduce production costs. The TiO 2 (electron transport layer) and Sb 2 S 3 can form small spike-like conduction band offset and valence band offset with the GeSe, respectively, which possesses potential to suppress carrier recombination at the heterointerfaces. Subsequently, the effects of main functional layer material parameters, heterointerface characteristics and back contact metal work function on the performance parameters of the proposed solar cell were simulated and analyzed using wxAMPS software. After numerical simulation and optimization, the proposed solar cell can reach an open circuit voltage of 0.872 V, a short circuit current of 40.72 mA·cm −2 , a filling factor of 84.16%, and a conversion efficiency of 28.35%. According to the simulation results, it is anticipated that the Sb 2 S 3 can serve as a hole transport layer for GeSe based solar cell and enable device to achieve high efficiency. Simulation analysis also provides some meaningful references for the design and preparation of heterojunction thin film solar cells.
Botulinum toxin (BT) is a safe and effective neuromuscular blocking agent that is clinically utilized to reduce spasticity after stroke. It is often injected repeatedly at a minimum of 12-week intervals. BT targets the neuromuscular junction and chemically denervates muscle fibers from their corresponding spinal motoneurons (MN). We explored the effect of BT on the amplitude of the smallest tendon tap force (i.e. force threshold) required to elicit a detectable biceps brachii surface electromyogram (sEMG) reflex response. We hypothesized that after BT injection, the force threshold would increase due to a decrease in available efferent activation. Two chronic stroke survivors were recruited. Data were collected before and up to 18 weeks after BT injection. For each subject, sEMG responses were analyzed using high-density sEMG (HDsEMG) recordings, and the threshold tapping forces were identified and mapped for all channels. Unexpectedly, median threshold forces (MTF) decreased post-BT (B01: 30%, B02: 50%). However, after the initial decrease, MTF then increased progressively compared to pre-BT and peaked around 12 weeks (B01: ~4 folds, B02: 50%). This is likely because post-BT, fewer available muscle fibers would require larger tapping forces to evoke detectable sEMG responses. In the last recording session (> 12 weeks), MTF did not return to pre-BT levels, indicating that successive botulinum toxin injections may still be effective if spaced much further apart in time.
Abstract The dielectric performance of Silicone rubber (SR) composites can be significantly enhanced by carbon nanotubes. However, carbon nanotubes are easy to agglomerate in the polymer matrix. Adding low‐dimensional materials of different dimensions may be a solution. In this article, one‐dimensional multiwall carbon nanotubes (CNTs) and zero‐dimensional copper calcium titanate (CaCu 3 Ti 4 O 12 , CCTO) ceramic fillers were simultaneously added to prepare silicone dielectric elastomer composites. SEM results showed that the CNTs were distributed uniformly in the SR matrix due to the addition of CCTO. When 2 wt% CNTs and 10 wt% CCTO were added, the dielectric constant of the composite increased from 2.79 (pure silicone rubber) to 5.72, with a low loss tangent of 0.0012. Due to the uniform dispersion of CNTs with the addition of CCTO particles, dielectric performance of the composites were enhanced. The tensile stress was 986 kPa, the elongation at break was 333%, while the elastic modulus was not more than 613 kPa (2 wt% CNTs and 5 wt% CCTO in the SR composite). In addition, the composites had a wide temperature range up to 400°C. Therefore, the prepared CNTs/CCTO/SR composites have good dielectric and mechanical properties, and good thermal stability. It has a good reference value for this kind of composites as dielectric elastomer materials.
Cervical spinal cord injury (SCI) causes extensive impairments for individuals which may include dextrous hand function. Although prior work has focused on the recovery at the person-level, the factors determining the recovery of individual muscles are poorly understood. Here, we investigate the muscle-specific recovery after cervical spinal cord injury in a retrospective analysis of 748 individuals from the European Multicenter Study about Spinal Cord Injury (NCT01571531). We show associations between corticospinal tract (CST) sparing and upper extremity recovery in SCI, which improves the prediction of hand muscle strength recovery. Our findings suggest that assessment strategies for muscle-specific motor recovery in acute spinal cord injury are improved by accounting for CST sparing, and complement person-level predictions.