Germanium Selenide (, ) has shown considerable promise as a very high resolution photoresist when sensitized with silver deposited from an aqueous solution. However, the sensitization step has been found to be irreproducible for films prepared in different batches. It is therefore necessary to assess the silver uptake rate for each production batch. This paper will demonstrate how it is possible to assay absolutely the deposited silver by anodic stripping voltammetry. The technique is shown to be much quicker than the currently accepted analysis by X‐ray fluorescence spectroscopy and also to be of reasonable accuracy and precision, provided background currents are subtracted from the voltammogram.
The coordination chemistry of acrylonitrile (ACN) has-been studied with the long term view of modifying the reactivity of ACN to a Lewis acid. The first chapter of this work is a review of CAN coordination and organometallic chemistry up to July 1979 together with a comprehensive tabular summary of the literature. The coordination of ACN with relatively hard Lewis acids such as SnCl(_4), TiCl(_4), ZnCl(_2), etc., has been shown to occur via the C≡N lone pair and the repulsive interactions between ACN (as well as acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran) and GeCl(_4) and SiCl(_4) have been demonstrated by vapour pressure/composition studies. The stereochemistry of the solid adducts SnCl(_4)L(_2) where L = MeCN, Ch(_2)CHCN, Bu(^2), NC(CH(_2))(_n)CN (n = 1-4), 1,4 C(_6)H(_4)(CN)(_2), THF, Me(_2)SO and tetrahydrothiophene was investigated binuclear quadrupole resonance and infra-red spectroscopy. The hydrostannation of nitriles by HCl and SnClg has-been shown to yield β cyanoethyl tin trichloride with ACN but dimeric salts with an amidinium structure with alkyl and aryl nitriles. Finally the stoichiometric dimerization of ACN to solely adiponitrile by cobalt chloride and an electropositive metal (M = M.g, Mn, Zn) in a variety of solvents has been investigated and several plausible mechanisms proposed.