Summary A functionally active 17.5 kDa peptidyl‐prolyl cis‐trans isomerase was purified to homogeneity from Streptomyces chrysomallus , a Gram‐positive filamentous bacterium. Characterization of the enzyme revealed inhibition and binding characteristics, against the immunsuppressive drug cyclosporin A, which were similar to cyclophilins from eukaryotes such as mammals, plants, fungi and yeasts, but different from those of cyclophilins from enterobacteria such as Escherichia coli. The amino acid sequence of the S. chrysomallus cyclophilin, as deduced from the gene sequence, revealed a striking degree of amino acid sequence identity with the corresponding 17 kDa proteins of humans (66%), Neurospora (70%) and yeast (69%). Comparison with cyclophilin sequences from the Gram‐negative enterobacteria revealed much iess homoiogy (25% identity with E. coli b, 23% identity with E. coli a). Cyclophilin was detected in each of the four other Streptomyces species tested. The cyclophilins from the various streptomycetes differed in size, varying between 17 and 20.5 kDa. The cyclophilins were abundant in the Streptomyces cells, and present throughout growth.
The translational apparatus is a highly complex structure containing three to four RNA molecules and more than 50 different proteins. In recent years considerable evidence has accumulated to indicate that the RNA participates intensively in the catalysis of peptide-bond formation, whereas a direct involvement of the ribosomal proteins has yet to be demonstrated. Here we report the functional and structural conservation of a peptidyltransferase centre protein in all three phylogenetic domains. In vivo replacement studies show that the Escherichia coli L2 protein can be replaced by its homologous proteins from human and archaebacterial ribosomes. These hybrid ribosomes are active in protein biosynthesis, as proven by polysome analysis and poly(U)-dependent polyphenylalanine synthesis. Furthermore, we demonstrate that a specific, highly conserved, histidine residue in the C-terminal region of L2 is essential for the function of the translational apparatus. Replacement of this histidine residue in the human and archaebacterial proteins by glycine, arginine or alanine had no effect on ribosome assembly, but strongly reduced the translational activity of ribosomes containing these mutants.
The Macromolecular Crystallography (MX) group at the Helmholtz-Zentrum Berlin (HZB) has been in operation since 2003. Since then, three state-of-the-art synchrotron beam lines (BL14.1-3) for MX have been built up on a 7T-wavelength shifter source [1,2]. Currently, the three beam lines represent the most productive MX-stations in Germany, with more than 1100 PDB depositions (Status 02/2014). BLs14.1 and 14.2 are energy tuneable in the range 5.5-15.5 keV, while beam line 14.3 is a fixed-energy side station operated at 13.8 keV. All three beam lines are equipped with state-of-the-art detectors: BL14.1 with a PILATUS 6M detector and BLs14.2 and 14.3 with large CCD-detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days per year and about 600 user shifts to approximately 70 research groups across Europe. BL14.3 has been equipped with a HC1 crystal dehydration device in 2011. In addition to serving the user community mainly as a screening and test beam line, it is currently the only MX beamline in Europe with a HC1 device permanently installed. Additional user facilities include office space adjacent to the beam lines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. On the poster, a summary on the experimental possibilities of the beam lines and the ancillary equipment provided to the user community will be given.
Fragment-based approaches are now routinely applied for lead development in pharmaceutical drug research. Usually, a small but well selected library of low molecular weight compounds is pre-screened by biochemical or biophysical methods such as surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) or thermal shift assay; often followed for promising hit candidates by X-ray crystallography. We designed a small fragment library consisting of 364 compounds that is not strictly compliant to the otherwise often followed Astex rule of three for fragment library composition.[1] Thereafter, our library was validated on the pepsin-like aspartyl protease endothiapepsin, which serves as a model system for proteins that are involved in serious diseases such as malaria (plasmepsins), hypertension (renin) and Alzheimer's disease (ß-secretase) and therefore, is a valid target for further drug development. Due to the small size of fragments, they frequently exhibit only low affinity to the applied target protein and thus are often hard to detect in any screening approach, reflected in little overlap between different screening methods. After initial screening, we decided to validate the entire library by X-ray crystallography, which requires a steady supply of crystals, reproducible soaking conditions and a reliable setup at a synchrotron source, such as HZB BESSY II BL14.1 [2], preferably with some automation in initial data processing and refinement. A total hit rate greater than 10% was obtained, which will be compared to results from other screening methods. The resulting crystal structures will be discussed and provide an ideal basis for further lead development.
Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2–iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, andL36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at die peptide level in several proteins that were found to constitute me antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, and L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA–peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 widi a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.Key words: antibiotic-binding site, RNA–peptide-binding sites, protein–RNA interaction in ribosomes, functional role of protein L2.