Very small vertebrate exons are problematic for RNA splicing because of the proximity of their 3' and 5' splice sites. In this study, we investigated the recognition of a constitutive 7-nucleotide mini-exon from the troponin I gene that resides quite close to the adjacent upstream exon. The mini-exon failed to be included in spliced RNA when placed in a heterologous gene unless accompanied by the upstream exon. The requirement for the upstream exon disappeared when the mini-exon was internally expanded, suggesting that the splice sites bordering the mini-exon are compatible with those of other constitutive vertebrate exons and that the small size of the exon impaired inclusion. Mutation of the 5' splice site of the natural upstream exon did not result in either exon skipping or activation of a cryptic 5' splice site, the normal vertebrate phenotypes for such mutants. Instead, a spliced RNA accumulated that still contained the upstream intron. In vitro, the mini-exon failed to assemble into spliceosome complexes unless either internally expanded or accompanied by the upstream exon. Thus, impaired usage of the mini-exon in vivo was accompanied by impaired recognition in vitro, and recognition of the mini-exon was facilitated by the presence of the upstream exon in vivo and in vitro. Cumulatively, the atypical in vivo and in vitro properties of the troponin exons suggest a mechanism for the recognition of this mini-exon in which initial recognition of an exon-intron-exon unit is followed by subsequent recognition of the intron.
Very small vertebrate exons are problematic for RNA splicing because of the proximity of their 3' and 5' splice sites. In this study, we investigated the recognition of a constitutive 7-nucleotide mini-exon from the troponin I gene that resides quite close to the adjacent upstream exon. The mini-exon failed to be included in spliced RNA when placed in a heterologous gene unless accompanied by the upstream exon. The requirement for the upstream exon disappeared when the mini-exon was internally expanded, suggesting that the splice sites bordering the mini-exon are compatible with those of other constitutive vertebrate exons and that the small size of the exon impaired inclusion. Mutation of the 5' splice site of the natural upstream exon did not result in either exon skipping or activation of a cryptic 5' splice site, the normal vertebrate phenotypes for such mutants. Instead, a spliced RNA accumulated that still contained the upstream intron. In vitro, the mini-exon failed to assemble into spliceosome complexes unless either internally expanded or accompanied by the upstream exon. Thus, impaired usage of the mini-exon in vivo was accompanied by impaired recognition in vitro, and recognition of the mini-exon was facilitated by the presence of the upstream exon in vivo and in vitro. Cumulatively, the atypical in vivo and in vitro properties of the troponin exons suggest a mechanism for the recognition of this mini-exon in which initial recognition of an exon-intron-exon unit is followed by subsequent recognition of the intron.
Abstract We investigated DNA damage caused by carcinogenic metals in a murine sarcoma virus (MuSV)‐based mutagenicity assay in which mutations targeted to v‐mos expression can be selected. Nickel chloride treatment of NRK cells (termed 6m2 cells) infected with MuSVts110, a retrovirus conditionally defective in viral RNA splicing and cell transformation, caused the outgrowth of transformed “revertants” with changes in the MuSVts110 RNA splicing phenotype. Cadmium and chromium treatment of 6m2 cells resulted in the selection of a second class of revertants with what appeared to be frameshift mutations allowing the translation of a readthrough gag‐mos protein. In both classes of metal‐induced revertants, viral gene expression was distinct from that observed in revertants arising in untreated 6m2 cultures, arguing that metal treatment did not simply enhance the rate of spontaneous reversion. In one representative nickel revertant line the operative nickel‐induced mutation affecting MuSVts110 RNA splicing was a duplication of 70 bases surrounding the 3′ splice site. The effect of this mutation was to direct splicing to the most downstream of the duplicated 3′ sites and concomitantly relax its characteristic thermosensitivity. These data establish the mutagenic potential of nickel and provide the first example of a defined nickel‐induced mutation in a mammalian gene.
We investigated whether the MuSVts110 gag gene product (P58gag) can regulate the novel growth temperature dependence of MuSVts110 RNA splicing. MuSVts110 mutants with either frameshifts or deletions in the gag gene were tested for their ability to maintain the MuSVts110 splicing phenotype. Only small decreases in splicing efficiency and no changes in the thermosensitivity of viral RNA splicing were observed in MuSVts110 gag gene frameshift mutants. Deletions within the gag gene, however, variably decreased MuSVts110 splicing efficiency but had no effect on its thermosensitivity. Another class of MuSVts110 splicing mutants generated by treatment of MuSVts110-infected cells with NiCl2 was also examined. In these "nickel revertants," P58gag is made, but splicing of the viral transcript is nearly complete at all growth temperatures. The splicing of "tagged" viral RNA transcribed from a modified MuSVts110 DNA introduced into nickel revertant cells remained thermosensitive, arguing against trans effects of viral gene products on splicing efficiency. These experiments indicated that neither the MuSVts110 P58gag protein nor any other viral gene product acts in trans to regulate MuSVts110 splicing.
Exon/intron architecture varies across the eukaryotic kingdom with large introns and small exons the rule in vertebrates and the opposite in lower eukaryotes. To investigate the relationship between exon and intron size in pre-mRNA processing, internally expanded exons were placed in vertebrate genes with small and large introns. Both exon and intron size influenced splicing phenotype. Intron size dictated if large exons were efficiently recognized. When introns were large, large exons were skipped; when introns were small, the same large exons were included. Thus, large exons were incompatible for splicing if and only if they were flanked by large introns. Both intron and exon size became problematic at ≈500 nt, although both exon and intron sequence influenced the size at which exons and introns failed to be recognized. These results indicate that present-day gene architecture reflects at least in part limitations on exon recognition. Furthermore, these results strengthen models that invoke pairing of splice sites during recognition of pre-mRNAs, and suggest that vertebrate consensus sequences support pairing across either introns or exons.
The average length of a vertebrate axon is approximately 130 nt. Decreasing the size of an internal axon to less than 51 nt induces axon skipping, implying a minimal size for exons. A few constitutively included internal exons, however, are extremely small. To investigate if such micro-exons require special mechanisms for their inclusion, we studied the sequences necessary for inclusion of a 6-nt axon from chicken cardiac troponin T (cTNT). In vivo, the cTNT micro-exon was not included in mRNA unless accompanied by a 134-nt sequence located next to the micro-exon in the downstream intron. Increasing the length of the micro-exon alleviated the requirement for the intron element, indicating that the lack of inclusion of the micro-exon in the absence of a facilitating sequence was due to its small size, rather than suboptimal splice sites. The intron element contained six copies of a G-rich 7-nt sequence. Multimers of the repeat supported exon inclusion, indicating that the repeat sequence is an important part of the intron element. The entire intron element activated inclusion of a heterologous 7-nt exon, suggesting that the intron element is a general enhancer for the splicing of micro-exons. In vitro, the intron element and the repeated sequence facilitated splicing of a heterologous exon. Because of the ability of the cTNT intron element to facilitate the splicing of heterologous exons, we have termed the element an intron splicing enhancer (ISE). Interestingly, the ISE demonstrated position independence in that it facilitated inclusion of the heterologous micro-exon when placed either upstream or downstream of the micro-exon. In vitro, the ISE or copies of the ISE G-rich repeat stimulated splicing of an adjacent intron. The ISE thus becomes one of only a few characterized ISEs containing a G-rich repeat and the first to work both upstream and downstream of a target axon.