Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and practices. Cognitive event-related potential evaluation of meditation implies that practice changes attentional allocation. Neuroimaging studies indicate increased regional cerebral blood flow measures during meditation. Taken together, meditation appears to reflect changes in anterior cingulate cortex and dorsolateral prefrontal areas. Neurophysiological meditative state and trait effects are variable but are beginning to demonstrate consistent outcomes for research and clinical applications. Psychological and clinical effects of meditation are summarized, integrated, and discussed with respect to neuroimaging data.
Several studies comparing adult musicians and non-musicians have shown that music training is associated with brain differences. It is unknown, however, whether these differences result from lengthy musical training, from pre-existing biological traits, or from social factors favoring musicality. As part of an ongoing 5-year longitudinal study, we investigated the effects of a music training program on the auditory development of children, over the course of two years, beginning at age 6–7. The training was group-based and inspired by El-Sistema. We compared the children in the music group with two comparison groups of children of the same socio-economic background, one involved in sports training, another not involved in any systematic training. Prior to participating, children who began training in music did not differ from those in the comparison groups in any of the assessed measures. After two years, we now observe that children in the music group, but not in the two comparison groups, show an enhanced ability to detect changes in tonal environment and an accelerated maturity of auditory processing as measured by cortical auditory evoked potentials to musical notes. Our results suggest that music training may result in stimulus specific brain changes in school aged children.
Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) are debilitating diseases that affect millions of individuals and have notoriously limited treatment options. One emerging therapy, non-invasive 40 Hz sensory therapy delivered through light and sound has previously shown promise in improving cognition in Alzheimer Disease (AD) rodent models. Small studies in humans have proven safe and tolerable, however exploration of feasibility and utility is limited. The purpose of this study is to examine the feasibility of this treatment in a human population through a smart tablet application that emits light and sound waves at 40 Hz to the user over the span of 1 h a day. Confirmation of entrainment of 40 Hz stimulation in the cerebral cortex was performed via EEG. 27 preliminary subjects with subjective cognitive complaints, Mild Cognitive Impairment, or AD were enrolled in the study; 11 participants completed 6 months of therapy. Of those that discontinued treatment, other health issues and difficulties with compliance were the most common causes. Participants were followed with Montreal Cognitive Assessment (MOCA) and Boston Cognitive Assessment (BOCA). For participants with subjective cognitive complaints, 2 of the 4 had improved MOCA score and 1 of 4 had improved BOCA score. For the participant with MCI, his MOCA score improved. For AD participants, 2 out of 6 had improved MOCA score and 3 of the 6 stayed stable, while 3 of 6 BOCA score improved. 4 of 11 participants specifically increased their MOCA scores in the Memory Index section. Of the 8 participants/caregivers able to speak to perceived usefulness of the study, 6 spoke to at least some level of benefit. Of these 6, 2 enrolled with subjective cognitive complaint, 1 had MCI, and 3 had AD. The therapy did not have reported side effects. However, those who did not finish the study experienced issues obtaining and operating a smart tablet independently as well as complying with the therapy. Overall, further exploration of this treatment modalities efficacy is warranted.
Thirty-eight individuals (mean age: 34.8 years old) participating in a 3-month yoga and meditation retreat were assessed before and after the intervention for psychometric measures, brain derived neurotrophic factor (BDNF), circadian salivary cortisol levels, and pro- and anti-inflammatory cytokines. Participation in the retreat was found to be associated with decreases in self-reported anxiety and depression as well as increases in mindfulness. As hypothesized, increases in the plasma levels of BDNF and increases in the magnitude of the cortisol awakening response (CAR) were also observed. The normalized change in BDNF levels was inversely correlated with BSI-18 anxiety scores at both the pre-retreat (r = 0.40, p < 0.05) and post-retreat (r = 0.52, p < 0.005) such that those with greater anxiety scores tended to exhibit smaller pre- to post-retreat increases in plasma BDNF levels. In line with a hypothesized decrease in inflammatory processes resulting from the yoga and meditation practices, we found that the plasma level of the anti-inflammatory cytokine Interleukin-10 was increased and the pro-inflammatory cytokine Interleukin-12 was reduced after the retreat. Contrary to our initial hypotheses, plasma levels of other pro-inflammatory cytokines, including Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) were increased after the retreat. Given evidence from previous studies of the positive effects of meditative practices on mental fitness, autonomic homeostasis and inflammatory status, we hypothesize that these findings are related to the meditative practices throughout the retreat; however, some of the observed changes may also be related to other aspects of the retreat such as physical exercise-related components of the yoga practice and diet. We hypothesize that the patterns of change observed here reflect mind-body integration and well-being. The increased BDNF levels observed is a potential mediator between meditative practices and brain health, the increased CAR is likely a reflection of increased dynamic physiological arousal, and the relationship of the dual enhancement of pro- and anti-inflammatory cytokine changes to healthy immunologic functioning is discussed.
Background Heart-Smile Training (HST) is an interoceptive compassion-based behavioral intervention that in case reports has been beneficial for depression. Interoception refers to the awareness and regulation of physiological signals from inside the body. Depressed patients often have diminished interoceptive awareness and often experience disconnection from bodily needs and sensations. In addition to interoceptive dysfunction, depression often involves negative self-evaluation and self-critical rumination. HST is a compassion-based meditation training program that explicitly cultivates interoceptive awareness of the heart area. This study aims to investigate the possible neurocardiac mechanisms engaged through HST for depression patients. Methods We plan to enroll 50 subjects to be randomized into a 4-week HST intervention group and a waitlist group. A battery of psychological questionnaires will be administered at baseline and post-intervention timepoints, and electroencephalography (EEG) will be collected during compassion meditation guided by pre-recorded audio. The primary clinical outcome measures are on the feasibility of the intervention and research procedures, the primary mechanistic outcome measure is the post-intervention change in Heartbeat Evoked Potential (HEP) amplitude. Secondary outcome measures include changes in depression severity and EEG gamma spectral activity. Exploratory outcome measures include effects of HST on skin conductance response, heart rate variability, EEG spectral properties in other frequency bands, as well as a list of psychological questionnaires that measure depression and anxiety symptoms, emotion regulation, mindfulness, interoceptive awareness, self-compassion, gratitude, sleep quality, quality of life and social connectedness. Results Results not yet available. Conclusion This is the first study on the feasibility and interoceptive neurocardiac mechanism of HST. Our findings will provide frontier knowledge on the physiological working mechanism of behavioral interventions with an interoception-based meditative approach. https://clinicaltrials.gov/study/NCT05564533 .
Long-term Vipassana meditators sat in meditation vs. a control rest (mind-wandering) state for 21 min in a counterbalanced design with spontaneous EEG recorded. Meditation state dynamics were measured with spectral decomposition of the last 6 min of the eyes-closed silent meditation compared to control state. Meditation was associated with a decrease in frontal delta (1-4 Hz) power, especially pronounced in those participants not reporting drowsiness during meditation. Relative increase in frontal theta (4-8 Hz) power was observed during meditation, as well as significantly increased parieto-occipital gamma (35-45 Hz) power, but no other state effects were found for the theta (4-8 Hz), alpha (8-12 Hz), or beta (12-25 Hz) bands. Alpha power was sensitive to condition order, and more experienced meditators exhibited no tendency toward enhanced alpha during meditation relative to the control task. All participants tended to exhibit decreased alpha in association with reported drowsiness. Cross-experimental session occipital gamma power was the greatest in meditators with a daily practice of 10+ years, and the meditation-related gamma power increase was similarly the strongest in such advanced practitioners. The findings suggest that long-term Vipassana meditation contributes to increased occipital gamma power related to long-term meditational expertise and enhanced sensory awareness.
Meditation has lately received considerable interest from cognitive neuroscience. Studies suggest that daily meditation leads to long lasting attentional and neuronal plasticity. We present changes related to the attentional systems before and after a 3 month intensive meditation retreat. We used three behavioral psychophysical tests - a Stroop task, an attentional blink task, and a global-local letter task-to assess the effect of Isha yoga meditation on attentional resource allocation. 82 Isha yoga practitioners were tested at the beginning and at the end of the retreat. Our results showed an increase in correct responses specific to incongruent stimuli in the Stroop task. Congruently, a positive correlation between previous meditation experience and accuracy to incongruent Stroop stimuli was also observed at baseline. We also observed a reduction of the attentional blink. Unexpectedly, a negative correlation between previous meditation experience and attentional blink performance at baseline was observed. Regarding spatial attention orientation as assessed using the global-local letter task, participants showed a bias toward local processing. Only slight differences in performance were found pre- vs. post- meditation retreat. Biasing toward the local stimuli in the global-local task and negative correlation of previous meditation experience with attentional blink performance is consistent with Isha practices being focused-attention practices. Given the relatively small effect sizes and the absence of a control group, our results do not allow clear support nor rejection of the hypothesis of meditation-driven neuronal plasticity in the attentional system for Isha yoga practice.
Despite decades of research, effects of different types of meditation on electroencephalographic (EEG) activity are still being defined. We compared practitioners of three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) with a control group during a meditative and instructed mind-wandering (IMW) block. All meditators showed higher parieto-occipital 60–110 Hz gamma amplitude than control subjects as a trait effect observed during meditation and when considering meditation and IMW periods together. Moreover, this gamma power was positively correlated with participants meditation experience. Independent component analysis was used to show that gamma activity did not originate in eye or muscle artifacts. In addition, we observed higher 7–11 Hz alpha activity in the Vipassana group compared to all the other groups during both meditation and instructed mind wandering and lower 10–11 Hz activity in the Himalayan yoga group during meditation only. We showed that meditation practice is correlated to changes in the EEG gamma frequency range that are common to a variety of meditation practices.