Abstract Aims/hypothesis It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. Methods Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7–12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. Results Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years ( p < 0.0001). Among all individuals (including children in the middle [7–12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3–151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10–0.31) vs 0.01, IQR 0.009–0.10 pmol/l; p < 0.0001). Conclusions/interpretation Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.
Neutrophils and their inflammatory mediators are key pathogenic components in multiple autoimmune diseases, while their role in human type 1 diabetes (T1D), a disease that progresses sequentially through identifiable stages prior to the clinical onset, is not well understood. We previously reported that the number of circulating neutrophils is reduced in patients with T1D and in presymptomatic at-risk subjects. The aim of the present work was to identify possible changes in circulating and pancreas-residing neutrophils throughout the disease course to better elucidate neutrophil involvement in human T1D.Data collected from 389 subjects at risk of developing T1D, and enrolled in 4 distinct studies performed by TrialNet, were analyzed with comprehensive statistical approaches to determine whether the number of circulating neutrophils correlates with pancreas function. To obtain a broad analysis of pancreas-infiltrating neutrophils throughout all disease stages, pancreas sections collected worldwide from 4 different cohorts (i.e., nPOD, DiViD, Siena, and Exeter) were analyzed by immunohistochemistry and immunofluorescence. Finally, circulating neutrophils were purified from unrelated nondiabetic subjects and donors at various T1D stages and their transcriptomic signature was determined by RNA sequencing.Here, we show that the decline in β cell function is greatest in individuals with the lowest peripheral neutrophil numbers. Neutrophils infiltrate the pancreas prior to the onset of symptoms and they continue to do so as the disease progresses. Of interest, a fraction of these pancreas-infiltrating neutrophils also extrudes neutrophil extracellular traps (NETs), suggesting a tissue-specific pathogenic role. Whole-transcriptome analysis of purified blood neutrophils revealed a unique molecular signature that is distinguished by an overabundance of IFN-associated genes; despite being healthy, said signature is already present in T1D-autoantibody-negative at-risk subjects.These results reveal an unexpected abnormality in neutrophil disposition both in the circulation and in the pancreas of presymptomatic and symptomatic T1D subjects, implying that targeting neutrophils might represent a previously unrecognized therapeutic modality.Juvenile Diabetes Research Foundation (JDRF), NIH, Diabetes UK.
Human pancreatic beta cells may be complicit in their own demise in type 1 diabetes, but how this occurs remains unclear. One potentially contributing factor is hyperexpression of HLA class I antigens. This was first described approximately 30 years ago, but has never been fully characterised and was recently challenged as artefactual. Therefore, we investigated HLA class I expression at the protein and RNA levels in pancreases from three cohorts of patients with type 1 diabetes. The principal aims were to consider whether HLA class I hyperexpression is artefactual and, if not, to determine the factors driving it. Pancreas samples from type 1 diabetes patients with residual insulin-containing islets (n = 26) from the Network for Pancreatic Organ donors with Diabetes (nPOD), Diabetes Virus Detection study (DiViD) and UK recent-onset type 1 diabetes collections were immunostained for HLA class I isoforms, signal transducer and activator of transcription 1 (STAT1), NLR family CARD domain containing 5 (NLRC5) and islet hormones. RNA was extracted from islets isolated by laser-capture microdissection from nPOD and DiViD samples and analysed using gene-expression arrays. Hyperexpression of HLA class I was observed in the insulin-containing islets of type 1 diabetes patients from all three tissue collections, and was confirmed at both the RNA and protein levels. The expression of β2-microglobulin (a second component required for the generation of functional HLA class I complexes) was also elevated. Both 'classical' HLA class I isoforms (i.e. HLA-ABC) as well as a 'non-classical' HLA molecule, HLA-F, were hyperexpressed in insulin-containing islets. This hyperexpression did not correlate with detectable upregulation of the transcriptional regulator NLRC5. However, it was strongly associated with increased STAT1 expression in all three cohorts. Islet hyperexpression of HLA class I molecules occurred in the insulin-containing islets of patients with recent-onset type 1 diabetes and was also detectable in many patients with disease duration of up to 11 years, declining thereafter. Islet cell HLA class I hyperexpression is not an artefact, but is a hallmark in the immunopathogenesis of type 1 diabetes. The response is closely associated with elevated expression of STAT1 and, together, these occur uniquely in patients with type 1 diabetes, thereby contributing to their selective susceptibility to autoimmune-mediated destruction.
The Diabetes Virus Detection study (DiViD) is the first to examine fresh pancreatic tissue at the diagnosis of type 1 diabetes for the presence of viruses. Minimal pancreatic tail resection was performed 3–9 weeks after onset of type 1 diabetes in six adult patients (age 24–35 years). The presence of enteroviral capsid protein 1 (VP1) and the expression of class I HLA were investigated by immunohistochemistry. Enterovirus RNA was analyzed from isolated pancreatic islets and from fresh-frozen whole pancreatic tissue using PCR and sequencing. Nondiabetic organ donors served as controls. VP1 was detected in the islets of all type 1 diabetic patients (two of nine controls). Hyperexpression of class I HLA molecules was found in the islets of all patients (one of nine controls). Enterovirus-specific RNA sequences were detected in four of six patients (zero of six controls). The results were confirmed in various laboratories. Only 1.7% of the islets contained VP1+ cells, and the amount of enterovirus RNA was low. The results provide evidence for the presence of enterovirus in pancreatic islets of type 1 diabetic patients, which is consistent with the possibility that a low-grade enteroviral infection in the pancreatic islets contributes to disease progression in humans.
In the article listed above, there are two errors in the research design and methods section.
In the section with the heading “Studies on Islet-Infiltrating Leukocytes,” the antibody listed as #M0701 should be attributed to Dako and not to Abcam and the Abcam rabbit anti-CD8 catalogue number should read #ab4055 and not #GR404-4.
The online version reflects these changes.
BackgroundAntibodies targeting PD-1 and its ligand PDL1 are used in cancer immunotherapy but may lead to autoimmune diseases, including type 1 diabetes (T1D). It remains unclear whether PDL1 is expressed in pancreatic islets of people with T1D and how is it regulated.MethodsThe expression of PDL1, IRF1, insulin and glucagon was evaluated in samples of T1D donors by immunofluorescence. Cytokine-induced PDL1 expression in the human beta cell line, EndoC-βH1, and in primary human pancreatic islets was determined by real-time RT-PCR, flow cytometry and Western blot. Specific and previously validated small interference RNAs were used to inhibit STAT1, STAT2, IRF1 and JAK1 signaling. Key results were validated using the JAK inhibitor Ruxolitinib.FindingsPDL1 was present in insulin-positive cells from twelve T1D individuals (6 living and 6 deceased donors) but absent from insulin-deficient islets or from the islets of six non-diabetic controls. Interferons-α and -γ, but not interleukin-1β, induced PDL1 expression in vitro in human islet cells and EndoC-βH1 cells. Silencing of STAT1 or STAT2 individually did not prevent interferon-α-induced PDL1, while blocking of JAKs – a proposed therapeutic strategy for T1D – or IRF1 prevented PDL1 induction.InterpretationThese findings indicate that PDL1 is expressed in beta cells from people with T1D, possibly to attenuate the autoimmune assault, and that it is induced by both type I and II interferons via IRF1.
Type 1 diabetes (T1D) results from a T cell-mediated destruction of pancreatic β-cells following the infiltration of leukocytes (including CD8(+), CD4(+), and CD20(+) cells) into and around pancreatic islets (insulitis). Recently, we reported that two distinct patterns of insulitis occur in patients with recent-onset T1D from the U.K. and that these differ principally in the proportion of infiltrating CD20(+) B cells (designated CD20Hi and CD20Lo, respectively). We have now extended this analysis to include patients from the Network for Pancreatic Organ Donors with Diabetes (U.S.) and Diabetes Virus Detection (DiViD) study (Norway) cohorts and confirm that the two profiles of insulitis occur more widely. Moreover, we show that patients can be directly stratified according to their insulitic profile and that those receiving a diagnosis before the age of 7 years always display the CD20Hi profile. By contrast, individuals who received a diagnosis beyond the age of 13 years are uniformly defined as CD20Lo. This implies that the two forms of insulitis are differentially aggressive and that patients with a CD20Hi profile lose their β-cells at a more rapid rate. In support of this, we also find that the proportion of residual insulin-containing islets (ICIs) increases in parallel with age at the onset of T1D. Importantly, those receiving a diagnosis in, or beyond, their teenage years retain ∼40% ICIs at diagnosis, implying that a functional deficit rather than an absolute β-cell loss may be causal for disease onset in these patients. We conclude that appropriate patient stratification will be critical for correct interpretation of the outcomes of intervention therapies targeted to islet-infiltrating immune cells in T1D.