Alstonia scholaris is a well-known source of alkaloids and widely recognized for therapeutic purposes to treat the ailments in human and livestock. However, the composition and production of alkaloids vary due to tissue specific metabolism and seasonal variation. This study investigated alkaloids in leaves, stems, trunk barks, fruits, and flowers of A. scholaris. The impact of seasonal changes on the production of alkaloids in the leaves of A. scholaris was also investigated. One and two-dimensional Nuclear Magnetic Resonance (NMR) experiments were utilized for the characterization of alkaloids and total eight alkaloids (picrinine, picralinal, akuammidine, 19 S scholaricine, 19,20 E vallesamine, Nb-demethylalstogustine N-Oxide, Nb-demethylalstogustine, and echitamine) were characterized and quantified. Quantitative and multivariate analysis suggested that the alkaloids content is tissue specific, illustrating the effect of plant tissue organization on alkaloidal production in A. scholaris. The results suggest that the best part to obtain alkaloids is trunk barks, since it contains 7 alkaloids. However, the best part for isolating picrinine, picralinal, akuammidine, 19 S scholaricine, and 19,20 E vallesamine is fruit, since it shows highest amount of these alkaloids. Undoubtedly, NMR and statistical methods are very helpful to differentiate the profile of alkaloids in A. scholaris.
Nerium oleander is an eminent source of structurally diverse cardiac glycosides (CGs), plays a prominent role in the treatment of heart failure, and inhibits the proliferation of cancer cell lines. CGs exert their cardiotonic action by binding to the extracellularly exposed recognition sites on Na+ /K+ -ATPase, an integral membrane protein that establishes the electrochemical gradient of Na+ and K+ ions across the plasma membrane.We aimed to quantitatively determine CGs and their seasonal variation in leaf and stem samples of N. oleander utilizing UHPLC-ESI-MS/MS techniques.The UHPLC-ESI-MS/MS analytical method was developed utilizing multiple reaction monitoring (MRM) mode. The Waters BEH C18 (150 mm × 2.1 mm, 1.7 μm) column was used with a 22-min linear gradient consisting of acetonitrile and 5 mM ammonium acetate buffer.In total 21 CGs were quantitatively determined in the seasonal leaf and stem samples of N. oleander along with the absolute quantitation of the three chemical markers odoroside H (244.8 μg/g), odoroside A (231.4 μg/g), and oleandrin (703.9 μg/g). The season-specific accumulation of chemical markers was observed in the order of predominance odoroside A (summer season, stem), odoroside H (winter season, stem), and oleandrin (rainy season, leaf). Besides this, the remaining 18 CGs were relatively quantified in the same samples.The developed method is simple and reliable and can be used for the identification and quantification of multiple CGs in N. oleander.
Cajanus scarabaeoides, belonging to the Fabaceae family, is an underutilized herb and traditionally used to treat several ailments. However, it is not well explored phytochemically. Therefore, mass spectrometry (MS)-based phytochemical analysis was carried out to investigate the bioactive ingredients of the herb.A ultra-performance liquid chromatography (UPLC) coupled to photodiode array detection (PDA) and electrospray ionization (ESI) tandem mass spectrometry (UPLC-PDA-ESI-MS/MS) system was used for the qualitative and quantitative analysis of phytochemicals. The chromatographic separation was achieved on the Acquity BEH C18 column (150 × 2.1 mm, 1.7 μm) using a gradient system consisting of three solvents, acetonitrile, methanol, and 0.1% formic acid, used at a flow rate of 0.300 ml/min.Sixteen bioactive ingredients (gallic acid, gallocatechin, epigallocatechin, catechin, procyanidin dimer, epicatechin, procyanidin trimer, isoorientin, orientin, vitexin, isovitexin, quercetin-mono-O-glycoside, isoquercitrin, luteolin-7-O-glucoside, quercetin, and luteolin) were identified and structurally characterized. Consequently, 12 compounds were reported for the first time from C. scarabaeoides, and 13 were quantitatively determined in different seasons. Isoorientin (10.2-7.1% w/w) and orientin (5.78-5.17% w/w) were the most abundant constituents in the dry weight of plant material, followed by vitexin and isovitexin in the rainy season.The phytochemical investigation has revealed that C. scarabaeoides could be a potential alternate source of bioactive ingredients, namely, isoorientin, orientin, vitexin, and isovitexin, contributing to further exploration of its biological activity. In addition, analytical methods can be used for the rapid identification and quantification of bioactive ingredients in C. scarabaeoides.
Saraca asoca is mythologically important, highly-revered, ancient tree species which is facing vulnerability. Like other members of Fabaceae, ashoka is considered as a highly-recalcitrant species restricting its micropropagation and plant transformation prospects. This study aimed to develop callus and shoot regeneration protocols for ashoka and report its High-resolution mass spectrometry (HRMS)-based metabolomic profile of leaf and callus samples. Different concentrations of 2,4-dichlorophenoxyacetic acid and picloram were observed to successfully induce efficient callus induction from leaf samples while direct shoot induction from leaf explants was not successful irrespective of different concentrations of 6-benzylaminopurine and zeatin tested alone. The HRMS profile of methanolic extract of the leaf and callus samples showed a predominance of flavonoids, phenols, saponins, and alkaloids. We report low concentration of picloram (2 mg/L) as most suitable for the development of loose and friable callus from leaf samples; and detection of 631 and 791 metabolites in the callus and leaf samples, respectively. A total of 474 metabolites were common in both the samples and 1,825 novel uncharacterized metabolites are being reported for the first time. There is a need to establish shoot regeneration protocols for ashoka and detect key metabolites with commercial importance through extractions with multiple solvents.
Abstract Oxystelma esculentum has been used as a folk medicine to treat jaundice, throat infections, and skin problems. In the current study, the bone fracture-healing properties of a flavonoid-enriched fraction (Oxy50-60F) of O. esculentum were investigated in Swiss mice using a drill-hole injury model. Oxy50-60F (1 mg/kg/day, 5 mg/kg/day, and 10 mg/kg/day) was administered orally (from the next day) after a 0.6 mm drill-hole injury in mice femur mid-diaphysis for 7 days and 14 days. Parathyroid hormone (40 µg/kg; 5 times/week) was given subcutaneously as the positive control. Confocal imaging for bone regeneration, micro-architecture of femur bones, ex vivo mineralization, hematoxyline and eosin staining, measurement of reactive oxygen species, and gene expression of osteogenic and anti-inflammatory genes were studied. Quercetin, kaempferol, and isorhamnetin glycosides were identified in the active fraction using mass spectrometry techniques. Our results confirm that Oxy50-60F treatment promotes fracture healing and callus formation at drill-hole sites and stimulates osteogenic and anti-inflammatory genes. Oxy50-60F administration to fractured mice exhibited significantly better micro-CT parameters in a dose-dependent manner and promoted nodule mineralization at days 7 and 14 post-injury. Oxy50-60F also prevents ROS generation by increasing expression of the SOD2 enzyme. Overall, this study reveals that Oxy50-60F has bone regeneration potential in a cortical bone defect model, which supports its use in delayed-union and non-union fracture cases.