In this paper, the aerodynamic noise of a centrifugal fan with an eccentric impeller is investigated and analyzed by adopting a hybrid method combining detached-eddy simulation and the acoustic finite element method (FEM). The impeller-eccentric effect of high-speed centrifugal fans, frequently ignored in theoretical studies, is objective in practical engineering applications owing to machining and installation errors, which have a significant influence on flow characteristics and subsequently noise characteristics. An impeller-whirling model combined with the sliding mesh method is introduced to obtain the actual flow with an eccentric impeller. First, the internal flow field handled with different eccentricities is investigated. The total pressure and internal efficiency decline, and the flow field near the leading edge shows intense unsteadiness, inducing a rise in the pressure fluctuation amplitude at the rotating frequency (RF) in both impeller flow passage and volute domain. Second, the variational formulation of Lighthill's analogy is implemented by acoustic FEM to better account for the interaction between the solid surface and aerodynamic sound, capturing a contribution by turbulence noise at the second RF. Under eccentric conditions, the sound source intensity shows a circumferential non-uniform distribution in a similar region to the flow field. The calculated sound pressure level captures the variation in the experimental result, which shows an obvious rise at RF induced by the impeller-eccentric effect. The characteristics of the noise spectrum and sound directivity change significantly, and the overall sound pressure level rises with the increase in eccentricity. This study provides an effective simulation strategy for predicting the aerodynamic noise of centrifugal fans under realistic conditions.
Natural supercavitations in water and turbulent drag-reducing solution were numerically simulated using unsteady Reynolds averaged Navier-Stokes (RANS) scheme with mixture-multiphase model. The Cross viscosity equation was adopted to represent the fluid property of aqueous solution of drag-reducing additives. The characteristics of natural supercavity configuration and overall resistance of the navigating body were presented, respectively. The numerical simulation results indicated that, at the same cavitation number, the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient of navigating body in solution is smaller than that in water; the surface tension plays an important role in incepting and maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation, drag reduction, and decrease of turbulent vortex structures. Numerical simulation results are consistent with the available experimental data.
In recent years, implicit online dense mapping methods have achieved high-quality reconstruction results, showcasing great potential in robotics, AR/VR, and digital twins applications. However, existing methods struggle with slow texture modeling which limits their real-time performance. To address these limitations, we propose a NeRF-based dense mapping method that enables faster and higher-quality reconstruction. To improve texture modeling, we introduce quasi-heterogeneous feature grids, which inherit the fast querying ability of uniform feature grids while adapting to varying levels of texture complexity. Besides, we present a gradient-aided coverage-maximizing strategy for keyframe selection that enables the selected keyframes to exhibit a closer focus on rich-textured regions and a broader scope for weak-textured areas. Experimental results demonstrate that our method surpasses existing NeRF-based approaches in texture fidelity, geometry accuracy, and time consumption. The code for our method will be available at: https://github.com/SYSU-STAR/H3-Mapping.
The pipeline with a closed side branch is a typical structure in nuclear systems; the shear layer flow and deep cavity in this structure can lead to a complex flow-acoustic coupling, which may result in severe vibration and noise. To clarify the shear layer flow characteristics in this typical structure filled with water, the numerical strategy is established by employing the localized dynamic k-equation large eddy simulation model. Then, the statistical and instantaneous characteristics of the fluid field are analyzed, respectively. The dynamic vortex evolution process is presented by time–frequency domain analysis. Also, the phase relationship of pressure in shear layer is adopted to investigate the formation process of the shear layer mode. The results verify that the pressure fluctuation near the downstream corner is the sound source as the vortex impacts the wall periodically. The convection effect and disturbance intensity effect are separated for the first time through the control of the kinematic viscosity. The results show that the convection velocity influences the vortex shedding frequency (VSF) by changing the vortex moving speed. Also, changes in the disturbance intensity and branch length rectify the VSF by changing the phase relationship of impinging shear layer mode. Finally, a suppressing method of shifting the VSF is put forward by modifying the disturbance only.