We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.
Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels–Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide–alkyne cycloaddition, SPAAC) click chemistry, and biotin–avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.
Nanoscale silicate dust particles are the most abundant refractory component observed in the interstellar medium and thought to play a key role in catalysing the formation of complex organic molecules in the star forming regions of space. We present a method to synthesise a laboratory analogue of nanoscale silicate dust particles on highly oriented pyrolytic graphite (HOPG) substrates by co-deposition of the atomic constituents. The resulting nanoparticulate films are sufficiently thin and conducting to allow for surface science investigations, and are characterised here, in situ under UHV, using X-ray photoelectron spectroscopy, near-edge X-ray absorption atomic fine spectroscopy and scanning tunnelling microscopy, and, ex situ, using scanning electron microscopy. We compare SiO$_{x}$ film growth with and without the use of atomic O beams during synthesis and conclude that exposure of the sample to atomic O leads to homogeneous films of interconnected nanoparticle networks. The networks covers the graphite substrate and demonstrate superior thermal stability, up to 1073 K, when compared to oxides produced without exposure to atomic O. In addition, control over the flux of atomic O during growth allows for control of the average oxidation state of the film produced. Photoelectron spectroscopy measurements demonstrate that fully oxidised films have an SiO$_{2}$ stoichiometry very close to bulk SiO$_{2}$ and scanning tunnelling microscopy images show the basic cluster building unit to have a radius of approximately 2.5 nm. The synthesis of SiO$_{x}$ films with adjustable stoichiometry and suitable for surface science experiments that require conducting substrates will be of great interest to the astrochemistry community, and will allow for nanoscale-investigation of the chemical processes thought to be catalysed at the surface of dust grains in space.
ABSTRACT Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, “non-self” incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nano-bioimaging, here we unraveled the in vivo fate of intravenously injected 70 nm SiO 2 nanoparticles with a protein corona pre-formed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the pre-formed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo . Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
The optical response of gold nanorings is measured and analyzed theoretically. Compared to gold disks, nanorings exhibit a red-shifted surface plasmon that can be tuned by varying the ratio between ring thickness arid radius.
Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
Liposomes are widely used, from biosensing to drug delivery. Their coating with polymers for stability and functionalization purposes further broadens their set of relevant properties. Poly(dopamine) (PDA), a eumelanin-like material deposited via the “self”-oxidative polymerization of dopamine at mildly basic pH, has attracted considerable interest in the past few years due to its simplicity, flexibility yet fascinating properties. Herein, we characterize the coating of different types of liposomes with PDA depending on the presence of oleoyldopamine in the lipid bilayer and the dopamine hydrochloride concentration. Further, the interaction of these coated liposomes in comparison to their uncoated counterparts with myoblast cells is assessed. Their uptake/association efficiency with these cells is determined. Further, their dose-dependent cytotoxicity with and without entrapped hydrophobic cargo (thiocoraline) is characterized. Taken together, the reported results demonstrate the potential of PDA coated liposomes as a tool in biomedical applications. Supplementary Material 13758_2011_8_MOESM1_ESM.doc (83KB)