Abstract Drug‐resistant bacterial infection of cutaneous wounds causes great harm to the human body. These infections are characterized by a microenvironment with recalcitrant bacterial infections, persistent oxidative stress, imbalance of immune regulation, and suboptimal angiogenesis. Treatment strategies available to date are incapable of handling the healing dynamics of infected wounds. A Schiff base and borate ester cross‐linked hydrogel, based on phenylboronic acid‐grafted chitosan (CS‐PBA), dibenzaldehyde‐grafted poly(ethylene glycol), and tannic acid (TA), is fabricated in the present study. Customized phenylboronic acid‐modified zinc oxide nanoparticles (ZnO) are embedded in the hydrogel prior to gelation. The CPP@ZnO‐P‐TA hydrogel effectively eliminates methicillin‐resistant Staphylococcus aureus (MRSA) due to the pH‐responsive release of Zn 2+ and TA. Killing is achieved via membrane damage, adenosine triphosphate reduction, leakage of intracellular components, and hydrolysis of bacterial o ‐nitrophenyl‐β‐ d ‐galactopyranoside. The CPP@ZnO‐P‐TA hydrogel is capable of scavenging reactive oxygen and nitrogen species, alleviating oxidative stress, and stimulating M2 polarization of macrophages. The released Zn 2+ and TA also induce neovascularization via the PI3K/Akt pathway. The CPP@ZnO‐P‐TA hydrogel improves tissue regeneration in vivo by alleviating inflammatory responses, stimulating angiogenesis, and facilitating collagen deposition. These findings suggest that this versatile hydrogel possesses therapeutic potential for the treatment of MRSA‐infected cutaneous wounds.
Age-related sarcopenia, characterized by reduced skeletal muscle mass and function, significantly affects the health of the elderly individuals. Oxidative stress plays a crucial role in the development of sarcopenia. Tripartite motif containing 16 (TRIM16) is implicated in orchestrating antioxidant responses to mitigate oxidative stress, yet its regulatory role in skeletal muscle remains unclear. This study aims to elucidate the impact of TRIM16 on enhancing antioxidant response through SIRT-1, consequently mitigating age-related oxidative stress, and ameliorating muscle atrophy.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Gestational diabetes mellitus (GDM) is a pregnancy-specific disease characterized by impaired glucose tolerance during pregnancy. Although diagnosis and clinical management have improved significantly, there are still areas where therapeutic approaches need further improvement. Recent evidence suggests that CCL2, a chemokine involved in immunoregulatory and inflammatory processes, is closely related to GDM. However, the potential value for clinical therapeutic applications and the mechanism of CCL2 in adipose tissue macrophages (ATMs) of GDM remain to be elucidated. Here, we found that CCL2 was enriched in macrophages of the visceral adipose tissue from GDM women and HFD-induced GDM mice. The combination of in vitro and in vivo experiments showed that Ccl2 silencing inhibited the inflammatory response of macrophage by blocking calcium transport between ER and mitochondria and reducing excessive ROS generation. Additionally, the ATS-9R/siCcl2 oligopeptide complex targeting adipose tissue was created. Under the delivery of ATS-9R peptide, Ccl2 siRNA is expressed in ATMs, which reduces inflammation in adipose tissue and, as a result, mitigates insulin resistance. All of these findings point to the possibility that the ATS-9R/siCcl2 complex, which targets adipose tissue, is able to reduce insulin resistance in GDM and the inflammatory response in macrophages. The ATS-9R/siCcl2 oligopeptide complex targeting adipose tissue seems to be a viable treatment for GDM pregnancies.
Purpose: Ultra-small gold nanoclusters (AuNCs), as emerging fluorescent nanomaterials with excellent biocompatibility, have been widely investigated for in vivo biomedical applications. However, their effects in guiding osteogenic differentiation have not been investigated, which are important for osteoporosis therapy and bone regeneration. Herein, for the first time, lysozyme-protected AuNCs (Lys-AuNCs) are used to stimulate osteogenic differentiation, which have the potential for the treatment of bone disease. Methods: Proliferation of MC3T3E-1 is important for osteogenic differentiation. First, the proliferation rate of MC3T3E-1 was studied by Cell Counting Kit-8 (CCK8) assays. Signaling pathways of PI3K/Akt play central roles in controlling proliferation throughout the body. The expression of PI3K/Akt was investigated in the presence of lysozyme, and lysozyme-protected AuNCs (Lys-AuNCs) by Western blot (WB) and intracellular cell imaging to evacuate the osteogenic differentiation mechanisms. Moreover, the formation of osteoclasts (OC) plays a negative role in the differentiation of osteoblasts. Nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) signaling pathways are used to understand the negative influence of the osteogenic differentiation by the investigation of Raw 264.7 cell line. Raw 264.7 (murine macrophage-like) cells and NIH/3T3 (mouse fibroblast) cells were treated with tyloxapol, and the cell viability was assessed. Raw 264.7 cells have also been used for in vitro studies, on understanding the osteoclast formation and function. The induced osteoclasts were identified by TRAP confocal fluorescence imaging. These key factors in osteoclast formation, such as (NFATc-1, c-Fos, V-ATPase-2 and CTSK), were investigated by Western blot. Results: Based on the above investigation, Lys-AuNCs were found to promote osteogenic differentiation and decrease osteoclast activity. It is noteworthy that the lysozyme (protected template), AuNPs, or the mixture of Lysozyme and AuNPs have negligible effects on osteoblastic differentiation compared to Lys-AuNCs. Conclusion: This study opens up a novel avenue to develop a new gold nanomaterial for promoting osteogenic differentiation. The possibility of using AuNCs as nanomedicines for the treatment of osteoporosis can be expected. Keywords: nanoclusters, bone, osteogenic differentiation, osteoporosis
As an increased product of high-rate aerobic glycolysis in tumors, lactate could regulate the immunosuppressive tumor microenvironment (TME). A PEG-CDM surface modified, GSH-dependent responsive hollow mesoporous organosilica nanoplatform loaded with hydroxycamptothecin (HCPT) and siMCT-4 was administrated for synergistic tumor chemo-immunotherapy. The nanoplatform cascaded responded to the weak acid TME and the high level of GSH in tumor cells. HCPT and siMCT-4 were continuously released from the nanoplatform for chemotherapy and inhibiting intracellular lactate efflux. The increased intracellular lactate and HCPT effectively induced tumor cell apoptosis. Moreover, the decreased extracellular lactate polarized tumor-associated macrophages (TAMs) phenotype from M2 type to M1 type and restored CD8+ T cell activity in vivo. The results demonstrated that the nanoplatform effectively removed the immunosuppressive TME, inhibited tumor growth, and suppressed lung metastasis of B16F10 cells and 4T1 cells via the combination of inhibiting lactate efflux and chemotherapy. Accordingly, it suggested a strategy to transform immunosuppressive tumors into "hot" tumors and inhibit the tumor growth with high efficiency in vivo.