<i>Objective </i> <p>We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). </p> <p><i>Research Design and Methods </i></p> <p>732 recently diagnosed T2D patients from the IMI-DIRECT study were extensively phenotyped over three years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS) and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA<sub>1c</sub> deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. </p> <p><i>Results</i></p> <p>Faster HbA<sub>1c</sub> progression was independently associated with faster deterioration of OGIS and GS, and increasing CLIm; visceral or liver fat, HDL-cholesterol and triglycerides had further independent, though weaker, roles (<i>R</i><sup>2</sup>=0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from AUROC=0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS and CLIm was relatively stable (odds ratios 0.07 to 0.09). T2D polygenic risk score and baseline pancreatic fat, GLP-1, glucagon, diet, and physical activity did not show an independent role. </p> <p><i>Conclusions</i></p> Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of T2D patients in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression.
Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments.
Abstract Here we describe the first double-blinded, randomized, placebo-controlled trial (RCT) on vaginal microbiota transplantation (VMT) without antibiotics in women with both symptomatic and asymptomatic vaginal dysbiosis. Forty-nine women were randomly assigned to VMT or placebo. The trial did not show a significant conversion to our predefined Lactobacillus -dominated microbiome. However, in participants not initially converting, antiseptic pretreatment before a subsequent VMT led to a 50% conversion rate, associated with an anti-inflammatory shift in gene expression. Metagenomic sequencing and strain-level genetic analysis confirmed donor engraftment in five of 10 women who showed microbiome conversion. Extensive exploration of the microbiome, immune response and metadata revealed differences in baseline energy metabolism in participants who later experienced donor engraftment. Treatments for vaginal dysbiosis are urgently needed and given that VMT can lead to donor engraftment and change the vaginal immune profile, future studies should focus on optimizing this treatment for various women’s health diseases.
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
Introduction Diabetes is associated with dysregulated immune function and impaired cytokine release, while transient acute hyperglycaemia has been shown to enhance inflammatory cytokine release in preclinical studies. Although diabetes and acute hyperglycaemia are common among patients with community-acquired pneumonia (CAP), the impact of chronic, acute, and acute-on-chronic hyperglycaemia on the host response within this population remains poorly understood. This study investigated whether chronic, acute, and acute-on- chronic hyperglycaemia are associated with distinct mediators of inflammatory, endothelial, and angiogenic host response pathways in patients with CAP. Methods In a cross-sectional study of 555 patients with CAP, HbA1c, admission plasma (p)-glucose, and the glycaemic gap (admission p-glucose minus HbA1c- derived average p-glucose) were employed as measures of chronic, acute, and acute-on-chronic hyperglycaemia, respectively. Linear regression was used to model the associations between the hyperglycaemia measures and 47 proteins involved in inflammation, endothelial activation, and angiogenesis measured at admission. The models were adjusted for age, sex, CAP severity, pathogen, immunosuppression, comorbidity, and body mass index. Adjustments for multiple testing were performed with a false discovery rate threshold of less than 0.05. Results The analyses showed that HbA1c levels were positively associated with IL-8, IL-15, IL-17A/F, IL-1RA, sFlt-1, and VEGF-C. Admission plasma glucose was also positively associated with these proteins and GM-CSF. The glycaemic gap was positively associated with IL-8, IL-15, IL-17A/F, IL-2, and VEGF-C. Conclusion In conclusion, chronic, acute, and acute-on-chronic hyperglycaemia were positively associated with similar host response mediators. Furthermore, acute and acute-on-chronic hyperglycaemia had unique associations with the inflammatory pathways involving GM-CSF and IL-2, respectively.
Gastrointestinal adverse effects occur in 20-30% of patients with metformin-treated type 2 diabetes, leading to premature discontinuation in 5-10% of the cases. Gastrointestinal intolerance may reflect localized high concentrations of metformin in the gut. We hypothesized that reduced transport of metformin via the plasma membrane monoamine transporter (PMAT) and organic cation transporter 1 (OCT1) could increase the risk of severe gastrointestinal adverse effects.The study included 286 severe metformin-intolerant and 1,128 metformin-tolerant individuals from the IMI DIRECT (Innovative Medicines Initiative: DIabetes REsearCh on patient straTification) consortium. We assessed the association of patient characteristics, concomitant medication, and the burden of mutations in the SLC29A4 and SLC22A1 genes on odds of intolerance.Women (P < 0.001) and older people (P < 0.001) were more likely to develop metformin intolerance. Concomitant use of transporter-inhibiting drugs increased the odds of intolerance (odds ratio [OR] 1.72, P < 0.001). In an adjusted logistic regression model, the G allele at rs3889348 (SLC29A4) was associated with gastrointestinal intolerance (OR 1.34, P = 0.005). rs3889348 is the top cis-expression quantitative trait locus for SLC29A4 in gut tissue where carriers of the G allele had reduced expression. Homozygous carriers of the G allele treated with transporter-inhibiting drugs had more than three times higher odds of intolerance compared with carriers of no G allele and not treated with inhibiting drugs (OR 3.23, P < 0.001). Use of a genetic risk score derived from rs3889348 and SLC22A1 variants found that the odds of intolerance were more than twice as high in individuals who carry three or more risk alleles compared with those carrying none (OR 2.15, P = 0.01).These results suggest that intestinal metformin transporters and concomitant medications play an important role in the gastrointestinal adverse effects of metformin.
Abstract Social trust is a heritable trait that has been linked with physical health and longevity. In this study, we performed genome-wide association studies of self-reported social trust in n = 33,882 Danish blood donors. We observed genome-wide and local evidence of genetic similarity with other brain-related phenotypes and estimated the single nucleotide polymorphism-based heritability of trust to be 6% (95% confidence interval = (2.1, 9.9)). In our discovery cohort (n = 25,819), we identified one significantly associated locus (lead variant: rs12776883) in an intronic enhancer region of PLPP4 , a gene highly expressed in brain, kidneys, and testes. However, we could not replicate the signal in an independent set of donors who were phenotyped a year later (n = 8063). In the subsequent meta-analysis, we found a second significantly associated variant (rs71543507) in an intergenic enhancer region. Overall, our work confirms that social trust is heritable, and provides an initial look into the genetic factors that influence it.
Abstract Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2 , PALMD , ABO and LRRK2 ) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A , encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis -regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.
Abstract The gut microbiota impacts systemic levels of multiple metabolites including NAD + precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD + precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC . We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC -positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.
Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases.