A high grain diet causes an ecological imbalance in the gut microbiota and serves as an important endogenous trigger of mastitis in dairy cows, but the underlying mechanisms are unclear. Our previous study revealed that subacute rumen acidosis (SARA)-associated mastitis has distinct metabolic profiles in the rumen, especially a significant increase in succinate, but the role of succinate in the pathogenesis of mastitis remains unclear. Succinate treatment exacerbates low-grade endotoxemia-induced mastitis in mice. Specifically, succinate increased the production of gut microbiota-extracellular vehicles (mEVs) containing lipopolysaccharides, which can diffuse across the damaged intestinal barrier into the mammary glands. Administration of mEVs promotes mammary inflammation via activation of the TLR4/NF-κB pathway. Our findings suggest that succinate promotes mastitis through the proliferation of enteric pathogens and mEVs production, suggesting a potential strategy for mastitis intervention on the basis of intestinal metabolic regulation and pathogen inhibition. The role of mEVs in interspecific communication has also been elucidated.
Endoscopic submucosal dissection (ESD) for gastrointestinal tumors and premalignant lesions needs submucosal fluid cushion (SFC) for mucosal uplift before dissection, and wound care including wound closure and rapid healing postoperatively. Current SFC materials as well as materials and/or methods for post-ESD wound care have single treatment effect and hold corresponding drawbacks, such as easy dispersion, short duration, weak hemostasis and insufficient repair function. Thus, designing materials that can serve as both SFC materials and wound care is highly desired, and remains a challenge. Herein, we report a two-component in-situ hydrogel prepared from maleimide-based oxidized sodium alginate and sulfhydryl carboxymethyl-chitosan, which gelated mainly based on "click" chemistry and Schiff base reaction. The hydrogels showed short gelation time, outstanding tissue adhesion, favorable hemostatic properties, and good biocompatibility. A rat subcutaneous ultrasound model confirmed the ability of suitable mucosal uplift height and durable maintenance time of AM solution. The in vivo/in vitro rabbit liver hemorrhage model demonstrated the effects of hydrogel in rapid hemostasis and prevention of delayed bleeding. The canine esophageal ESD model corroborated that the in-situ hydrogel provided good mucosal uplift and wound closure effects, and significantly accelerated wound healing with accelerating re-epithelization and ECM remodeling post-ESD. The two-component in-situ hydrogels exhibited great potential in gastrointestinal tract ESD.
The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.
Vocal fold (VF) scarring is a major etiology of voice disorders and a leading cause for permanent intractable dysphonia. To date, several approaches have been used to address VF injury and scarring, which included scar excision and biomaterial injection and/or implantation. Despite the considerable research progress made in this field, these have not been established as routine clinical procedures due to various restrictions. Tissue engineered scaffolds for delivering growth factors in vivo and implementation of simultaneous delivery of multi-potent cells may achieve better outcome. In this study, we have developed Urine-derived stem cells - Small intestinal submucosa hydrogel composites ([email protected]), which are injectable and capable of sustaining the survival and metabolism of the USCs in the scarred VF. The three-dimensional complex showed a robust ability of anti-inflammatory polarization, neovascularization, re-epithelialization and anti-fibrosis in a rabbit model for heat-injured VFs. In vitro experiment proved that the hydrogel composites could promote polarization of M2 macrophages, tube formation by human umbilical vein endothelial cells, proliferation and migration by human bronchial epithelial cells, and suppression of differentiation of human fetal lung fibroblasts and human primary fibroblast cells of VF. Application of the [email protected] thereby may overcome the substantial limitations of the current strategies for scarless VF regeneration.
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Abstract Intrauterine adhesion refers to endometrial repair disorders which are usually caused by uterine injury and may lead to a series of complications such as abnormal menstrual bleeding, recurrent abortion and secondary infertility. At present, therapeutic approaches to intrauterine adhesion are limited due to the lack of effective methods to promote regeneration following severe endometrial injury. Therefore, to develop new methods to prevent endometrial injury and intrauterine adhesion has become an urgent need. For severely damaged endometrium, the loss of stem cells in the endometrium may affect its regeneration. This article aimed to discuss the characteristics of various stem cells and their applications for uterine tissue regeneration.
The leading cause of guided bone regeneration (GBR) failure is infection. Herein, we developed a new GBR membrane with good mechanical and osteogenic properties by crosslinking the small intestinal submucosa (SIS) with epigallocatechin-3-gallate (EGCG). Meanwhile, EGCG is also a natural antibacterial agent. This study aimed to investigate the antibacterial efficacy of EGCG-crosslinked SIS (E-SIS) against Staphylococcus aureus and Escherichia coli through EGCG release, bacterial count, live/dead staining, scanning electron microscopy, growth curve, and biofilm formation tests. The results showed that E-SIS effectively inhibited bacteria's growth and adhesion, and its antibacterial activity against Staphylococcus aureus was stronger than that against Escherichia coli. 0.5% E-SIS had the most potent antibacterial activity. The antibacterial mechanism of E-SIS might be related to the release of EGCG and the surface properties of E-SIS. In conclusion, 0.5% E-SIS is a promising GBR membrane with good osteogenic and antibacterial properties.