Herpes simplex virus type 1 expresses a heterotrimeric helicase–primase, the subunits of which are encoded by the viral UL5 , UL8 and UL52 genes. The interactions of the UL52 protein with the UL8 and UL5 proteins were analysed by using the yeast two-hybrid system. The UL52–UL5 interaction gave a specific but weak signal in the two-hybrid system. In contrast, the UL52–UL8 interaction gave a strong signal in the two-hybrid system. Deletion analysis showed that a 548 amino acid fragment of UL52 (amino acids 366–914) retains the ability to interact with UL8 and that the N-terminal 349 amino acids are dispensable for the interaction. A fragment library screen and co-immunoprecipitation experiments confirmed the deletion analysis results.
Abstract A recombinant baculovirus overexpressing the herpes simplex virus type 1 (HSV-1) origin binding protein, encoded by the UL9 gene, was constructed. The purified recombinant protein has DNA-dependent nucleoside triphosphatase activity similar to the enzyme isolated from mammalian cells. Optimal nucleoside triphosphatase activity requires low salt (< 50 mM), 2-3 mM Mg2+, alkaline pH (8.3-9.5), high temperature (45 degrees C), and a single-stranded DNA coeffector containing minimal secondary structure. Enzymatic activity is subject to product inhibition, and there appears to be a single nucleotide binding site. The minimal length of single-stranded DNA that elicits enzymatic activity is 14 nucleotides, and activity increases as the length is increased. Saturation for various single-stranded DNA coeffectors is about 10 microM in nucleotide, but the maximum velocity is reduced 2-3-fold for coeffectors containing secondary structure. The HSV-1-encoded single-stranded DNA-binding protein ICP8 specifically stimulates the DNA-dependent nucleoside triphosphatase activity. The kinetics of nucleoside triphosphate hydrolysis exhibit a substantial lag period which can be shortened, but not eliminated, by reduced secondary structure in the DNA coeffector or by increased temperature.
Lymphocyte activation gene 3 (LAG3) is a T cell inhibitory receptor that promotes tumor cell immune escape and is a potential target for cancer diagnostic and immunotherapeutic applications. We used automated capillary electrophoresis (ACE), surface plasmon resonance (SPR), and immunohistochemistry (IHC) to compare the binding characteristics of a new anti-LAG3 rabbit antibody clone, SP464, with the thirty-year old and extensively used anti-LAG3 mouse 17B4 clone. The rabbit SP464 clone exhibited between 20× to 30× greater binding to LAG3 than did the mouse 17B4 clone. Using these tools, we precisely mapped the relative locations of the epitopes of these two antibodies. The SP464 and 17B4 minimal epitopes were localized to separate, but overlapping, sub-fragments within the amino-terminal fifteen acids of the original thirty-mer peptide immunogen used to generate both antibodies. Application of this approach for quantifying the effects of alanine substitutions along the minimal SP464 epitope identified two amino acids essential for binding and four amino acids that likely contribute towards binding. Together, ACE, SPR, and IHC constitute a powerful orthologous approach for comparing antibody-binding characteristics and for fine mapping of linear epitopes within short immunogens. Our results indicate that the rabbit clone SP464 may be useful for assessing LAG3 expression.
Dimethyl suberimidate is a bifunctional reagent that is used for cross-linking the protein components of oligomeric macromolecules. In this report, dimethyl suberimidate is shown to specifically cross-link oligo(dT) of varying lengths to the DNA-binding subunits of a multimeric helicase-primase encoded by herpes simplex virus type 1. This result indicates that dimethyl suberimidate and other imidoester cross-linking reagents may be useful for characterizing the interaction of oligo(dT) with proteins that bind single-stranded DNA.
Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase comprised of the products of the UL5, UL8, and UL52 genes (Crute, J. J., and Lehman, I. R. (1991) J. Biol. Chem. 266, 4484-4488). A steady state kinetic analysis of the enzyme isolated from HSV-1-infected CV-1 cells or insect cells expressing the enzyme after infection with recombinant baculoviruses has shown it to possess two sites capable of hydrolyzing nucleoside triphosphates in a DNA-dependent manner. One site (Site I) hydrolyzes both ATP and GTP; the second (Site II) hydrolyzes only ATP. These two sites are contained within a subassembly of the helicase-primase formed by coexpression of the UL5 and UL52 genes in insect cells. Sites I and II are activated by separate DNA effector sites, both of which support DNA helicase action. These findings are likely to be of importance in understanding how helicases in general catalyze the unwinding of duplex DNA and, in particular, how the helicase-primase functions at the HSV-1 replication fork.