Chlamydia trachomatis and Chlamydia pneumoniae are important human pathogens that infect the urogenital/anorectal and respiratory tracts, respectively. Whilst the ability of these bacteria to infect epithelia is well defined, there is also considerable evidence of infection of leucocytes, including dendritic cells (DCs). Using a human dendritic cell line (MUTZ), we demonstrate that the infection and replication of chlamydiae inside DCs is species and serovar specific and that live infection with C. pneumoniae is required to upregulate costimulatory markers CD80, CD83 and human leucocyte antigen (HLA)-DR on MUTZ cells, as well as induce secretion of interleukin (IL)-2, IL-6, IL-8, IL-12 (p70), interferon-gamma and tumour necrosis factor-alpha Conversely, C. trachomatis serovar D failed to upregulate DC costimulatory markers, but did induce secretion of high concentrations of IL-8. Interestingly, we also observed that infection of MUTZ cells with C. pneumoniae or C. trachomatis serovar L2, whilst not replicative, remained infectious and upregulated lymph node migratory marker CCR7 mRNA. Taken together, these data confirm the findings of other groups using primary DCs and demonstrate the utility of MUTZ cells for further studies of chlamydial infection.
Can Chlamydia be found in the testes of infertile men?Chlamydia can be found in 16.7% of fresh testicular biopsies and 45.3% of fixed testicular biopsies taken from a selection of infertile men.Male chlamydial infection has been understudied despite male and female infections occurring at similar rates. This is particularly true of asymptomatic infections, which occur in 50% of cases. Chlamydial infection has also been associated with increased sperm DNA damage and reduced male fertility.We collected diagnostic (fixed, n = 100) and therapeutic (fresh, n = 18) human testicular biopsies during sperm recovery procedures from moderately to severely infertile men in a cross-sectional approach to sampling.The diagnostic and therapeutic biopsies were tested for Chlamydia-specific DNA and protein, using real-time PCR and immunohistochemical approaches, respectively. Serum samples matched to the fresh biopsies were also assayed for the presence of Chlamydia-specific antibodies using immunoblotting techniques.Chlamydial major outer membrane protein was detected in fixed biopsies at a rate of 45.3%. This was confirmed by detection of chlamydial DNA and TC0500 protein (replication marker). C. trachomatis DNA was detected in fresh biopsies at a rate of 16.7%, and the sera from each of these three positive patients contained C. trachomatis-specific antibodies. Overall, C. trachomatis-specific antibodies were detected in 72.2% of the serum samples from the patients providing fresh biopsies, although none of the patients were symptomatic nor had they reported a previous sexually transmitted infection diagnosis including Chlamydia.No reproductively healthy male testicular biopsies were tested for the presence of Chlamydia DNA or proteins or Chlamydia-specific antibodies due to the unavailability of these samples.Application of Chlamydia-specific PCR and immunohistochemistry in this human male infertility context of testicular biopsies reveals evidence of a high prevalence of previously unrecognised infection, which may potentially have a pathogenic role in spermatogenic failure.Funding for this project was provided by the Australian NHMRC under project grant number APP1062198. We also acknowledge assistance from the Monash IVF Group and Queensland Fertility Group in the collection of fresh biopsies, and the Monash Health and co-author McLachlan (declared equity interest) in retrieval and sectioning of fixed biopsies. E.M. declares an equity interest in the study due to financing of fixed biopsy sectioning. All other authors declare no conflicts of interest.N/A.
Abstract IgG is the dominant antibody in the female and male reproductive tracts (RT). Furthermore, the neonatal Fc receptor (FcRn) is expressed by epithelial cells in both these tissues. The acidic environment (pH 4.5-6.5) in the RT is optimal for FcRn uptake of IgG by epithelial cells, which suggests that IgG could either enhance or protect against infection by pathogens such as Chlamydia, depending on antibody specificity. We show that IgG is indeed internalized by reproductive tract epithelial cells in an FcRn and pH-dependent manner. Furthermore, IgG specific for the chlamydial major outer membrane protein (MOMP), expressed predominantly on the extracellular elementary body (EB) actually enhanced infection, whilst IgG specific for an antigen expressed during intracellular chlamydial replication (IncA) partially neutralized infection. Both enhancement (IgG-MOMP) and protection (IgG-IncA) were abrogated by knockdown of FcRn expression. Chlamydiae inhibit lysosomal activity to promote infection and the presence of intracellular IncA-IgG enhanced lysosomal activity in infected cells. IgA is also found in RT secretions as is the IgA transport molecule the polyimmunoglobulin receptor (PIgR). Unlike IgG, IgA-MOMP and IgA-IncA both neutralized chlamydial infection in a PIgR-dependent manner. Thus for antibody-mediated protection against Chlamydia, IgG specific for intracellular chlamydial antigens, together with IgA specific for both stages of the replicative cycle may be optimal.
Abstract B cells generate antibodies that are essential for immune protection. Major events driving B cell responses occur in lymphoid tissues, which guide antigen acquisition and support cellular interactions, yet complexities of B cell subsets in human lymphoid tissues are poorly understood. Here we perform undirected, global profiling of B cells in matched human lymphoid tissues from deceased transplant organ donors and tracked dissemination of B cell clones. In addition to identifying unanticipated features of tissue-based B cell differentiation, we resolve two clonally independent subsets of marginal zone B cells that differ in cell surface and transcriptomic profiles, tendency to disseminate, distribution bias within splenic marginal zone microenvironment and immunoglobulin repertoire diversity and hypermutation frequency. Each subset is represented in spleen, gut-associated lymphoid tissue, mesenteric lymph node, and also blood. Thus, we provide clarity and diffuse controversy surrounding human MZB - the ‘elephant in the room’ of human B cell biology.
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human Chlamydia trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targeted for antimicrobial therapy for intracellular pathogens.
Abstract Non-resolved persistent macrophage-mediated synovial inflammation is considered as one of the main drivers of both the establishment and progression of obesity-associated osteoarthritis (OA). Herein, we used clodronate-loaded liposomes (CL) to locally deplete macrophages in the synovial joints to examine the role of macrophages in the progression of obesity-induced OA. Furthermore, resolvin D1 (RvD1), a unique family of pro-resolving lipid mediator derived from the omega-3 polyunsaturated fatty acid, have shown marked potency in changing the pro-inflammatory behaviour of the macrophages. We sought to determine whether RvD1 administration ameliorates obesity-induced OA by resolving macrophage-mediated synovitis. Therapeutic properties of RvD1 and macrophage depletion (CL) were tested for its ability to slow post-traumatic OA (PTOA) in obese mice models. PTOA was induced in C57Bl/6 mice fed with high-fat diet (HFD) by surgically destabilising the meniscus. Firstly, CL treatment showed beneficial effects in reducing synovitis and cartilage destruction in obese mice with PTOA. In vitro treatment with RvD1 decreased the levels of pro-inflammatory markers in CD14+ human macrophages. Furthermore, intra-articular treatment with RvD1 diminishes the progression of OA in the knee joint from mice as follows: (a) decreases macrophages infiltration in synovium, (b) reduces the number of pro-inflammatory macrophages in synovium and (c) improves the severity of synovitis and cartilage degradation. Thus, our results provide new evidence for the potential targeting of macrophages in the treatment of obesity-induced OA.
IgA is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intraepithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant SIgA we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra and intraepithelial stages of infection. We developed an in vitro model utilizing polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model utilizing pIgR-/- mice. SIgA targeting the extraepithelial chlamydial antigen, the major outer membrane protein (MOMP), significantly reduced infection in vitro by 24 % and in vivo by 44 %. Conversely, pIgR-mediated delivery of IgA targeting the intraepithelial inclusion membrane protein A (IncA) bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intraepithelial IgA targeting the secreted protease Chlamydia protease-like activity factor (CPAF) also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra but not intraepithelial chlamydial antigens for protection against a genital tract infection.
Abstract Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.